AoPS Community

National Math Olympiad (Second Round) 1995
www.artofproblemsolving.com/community/c3879
by Amir Hossein, Kent Merryfield

Day 1

1 Prove that for every positive integer $n \geq 3$ there exist two sets $A=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $B=$ $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ for which
i) $A \cap B=\varnothing$.
ii) $x_{1}+x_{2}+\cdots+x_{n}=y_{1}+y_{2}+\cdots+y_{n}$.
ii) $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=y_{1}^{2}+y_{2}^{2}+\cdots+y_{n}^{2}$.

2 Let $A B C$ be an acute triangle and let ℓ be a line in the plane of triangle $A B C$. We've drawn the reflection of the line ℓ over the sides $A B, B C$ and $A C$ and they intersect in the points A^{\prime}, B^{\prime} and C^{\prime}. Prove that the incenter of the triangle $A^{\prime} B^{\prime} C^{\prime}$ lies on the circumcircle of the triangle $A B C$.

3 Let k be a positive integer. $12 k$ persons have participated in a party and everyone shake hands with $3 k+6$ other persons. We know that the number of persons who shake hands with every two persons is a fixed number. Find k.

Day 2

1 Show that every positive integer is a sum of one or more numbers of the form $2^{r} 3^{s}$, where r and s are nonnegative integers and no summand divides another.
(For example, $23=9+8+6$.)
2 Let $n \geq 0$ be an integer. Prove that

$$
\lceil\sqrt{n}+\sqrt{n+1}+\sqrt{n+2}\rceil=\lceil\sqrt{9 n+8}\rceil
$$

Where $\lceil x\rceil$ is the smallest integer which is greater or equal to x.
3 In a quadrilateral $A B C D$ let $A^{\prime}, B^{\prime}, C^{\prime}$ and D^{\prime} be the circumcenters of the triangles $B C D, C D A, D A B$ and $A B C$, respectively. Denote by $S(X, Y Z)$ the plane which passes through the point X and is perpendicular to the line $Y Z$. Prove that if $A^{\prime}, B^{\prime}, C^{\prime}$ and D^{\prime} don't lie in a plane, then four planes $S\left(A, C^{\prime} D^{\prime}\right), S\left(B, A^{\prime} D^{\prime}\right), S\left(C, A^{\prime} B^{\prime}\right)$ and $S\left(D, B^{\prime} C^{\prime}\right)$ pass through a common point.

