Art of Problem Solving

AoPS Community

National Math Olympiad (Second Round) 1997

www.artofproblemsolving.com/community/c3881
by sororak

Day 1

$1 \quad$ Let x, y be positive integers such that $3 x^{2}+x=4 y^{2}+y$. Prove that $x-y$ is a perfect square.
2 Let segments $K N, K L$ be tangent to circle C at points N, L, respectively. M is a point on the extension of the segment $K N$ and P is the other meet point of the circle C and the circumcircle of $\triangle K L M . Q$ is on $M L$ such that $N Q$ is perpendicular to $M L$. Prove that

$$
\angle M P Q=2 \angle K M L .
$$

3 We have a $n \times n$ table and weve written numbers $0,+1$ or -1 in each 1×1 square such that in every row or column, there is only one +1 and one -1 . Prove that by swapping the rows with each other and the columns with each other finitely, we can swap +1 s with -1 s .

Day 2

1 Let $x_{1}, x_{2}, x_{3}, x_{4}$ be positive reals such that $x_{1} x_{2} x_{3} x_{4}=1$. Prove that:

$$
\sum_{i=1}^{4} x_{i}^{3} \geq \max \left\{\sum_{i=1}^{4} x_{i}, \sum_{i=1}^{4} \frac{1}{x_{i}}\right\}
$$

2 In triangle $A B C$, angles B, C are acute. Point D is on the side $B C$ such that $A D \perp B C$. Let the interior bisectors of $\angle B, \angle C$ meet $A D$ at E, F, respectively. If $B E=C F$, prove that $A B C$ is isosceles.

3 Let a, b be positive integers and $p=\frac{b}{4} \sqrt{\frac{2 a-b}{2 a+b}}$ be a prime number. Find the maximum value of p and justify your answer.

