

AoPS Community

1997 Iran MO (2nd round)

National Math Olympiad (Second Round) 1997

www.artofproblemsolving.com/community/c3881 by sororak

1	Let x, y be positive integers such that $3x^2 + x = 4y^2 + y$. Prove that $x - y$ is a perfect square.
2	Let segments KN, KL be tangent to circle C at points N, L , respectively. M is a point on the extension of the segment KN and P is the other meet point of the circle C and the circumcircle of $\triangle KLM$. Q is on ML such that NQ is perpendicular to ML . Prove that

$$\angle MPQ = 2\angle KML.$$

3 We have a $n \times n$ table and weve written numbers 0, +1 or -1 in each 1×1 square such that in every row or column, there is only one +1 and one -1. Prove that by swapping the rows with each other and the columns with each other finitely, we can swap +1s with -1s.

Day 2

1 Let x_1, x_2, x_3, x_4 be positive reals such that $x_1x_2x_3x_4 = 1$. Prove that:

$$\sum_{i=1}^{4} x_i^3 \ge \max\{\sum_{i=1}^{4} x_i, \sum_{i=1}^{4} \frac{1}{x_i}\}.$$

- **2** In triangle *ABC*, angles *B*, *C* are acute. Point *D* is on the side *BC* such that $AD \perp BC$. Let the interior bisectors of $\angle B$, $\angle C$ meet *AD* at *E*, *F*, respectively. If BE = CF, prove that *ABC* is isosceles.
- **3** Let a, b be positive integers and $p = \frac{b}{4}\sqrt{\frac{2a-b}{2a+b}}$ be a prime number. Find the maximum value of p and justify your answer.

Art of Problem Solving is an ACS WASC Accredited School.