AoPS Community

National Math Olympiad (Second Round) 1998

www.artofproblemsolving.com/community/c3882
by sororak

Day 1

1 If $a_{1}<a_{2}<\cdots<a_{n}$ be real numbers, prove that:

$$
a_{1} a_{2}^{4}+a_{2} a_{3}^{4}+\cdots+a_{n-1} a_{n}^{4}+a_{n} a_{1}^{4} \geq a_{2} a_{1}^{4}+a_{3} a_{2}^{4}+\cdots+a_{n} a_{n-1}^{4}+a_{1} a_{n}^{4} .
$$

2 Let $A B C$ be a triangle. I is the incenter of $\triangle A B C$ and D is the meet point of $A I$ and the circumcircle of $\triangle A B C$. Let E, F be on $B D, C D$, respectively such that $I E, I F$ are perpendicular to $B D, C D$, respectively. If $I E+I F=\frac{A D}{2}$, find the value of $\angle B A C$.

3 Let n be a positive integer. We call $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ a good n-tuple if $\sum_{i=1}^{n} a_{i}=2 n$ and there doesn't exist a set of a_{i} s such that the sum of them is equal to n. Find all good n-tuple.
(For instance, $(1,1,4)$ is a good 3 -tuple, but $(1,2,1,2,4)$ is not a good 5 -tuple.)

Day 2

1 Let the positive integer n have at least for positive divisors and $0<d_{1}<d_{2}<d_{3}<d_{4}$ be its least positive divisors. Find all positive integers n such that:

$$
n=d_{1}^{2}+d_{2}^{2}+d_{3}^{2}+d_{4}^{2}
$$

2 Let $A B C$ be a triangle and $A B<A C<B C$. Let D, E be points on the side $B C$ and the line $A B$, respectively (A is between B, E) such that $B D=B E=A C$. The circumcircle of $\triangle B E D$ meets the side $A C$ at P and $B P$ meets the circumcircle of $\triangle A B C$ at Q. Prove that:

$$
A Q+C Q=B P
$$

3 If $A=\left(a_{1}, \cdots, a_{n}\right), B=\left(b_{1}, \cdots, b_{n}\right)$ be $2 n$-tuple that $a_{i}, b_{i}=0$ or 1 for $i=1,2, \cdots, n$, we define $f(A, B)$ the number of $1 \leq i \leq n$ that $a_{i} \neq b_{i}$.
For instance, if $A=(0,1,1), B=(1,1,0)$, then $f(A, B)=2$.
Now, let $A=\left(a_{1}, \cdots, a_{n}\right), B=\left(b_{1}, \cdots, b_{n}\right), C=\left(c_{1}, \cdots, c_{n}\right)$ be $3 n$-tuple, such that for $i=1,2, \cdots, n, a_{i}, b_{i}, c_{i}=0$ or 1 and $f(A, B)=f(A, C)=f(B, C)=d$. a) Prove that d is even. b) Prove that there exists a n-tuple $D=\left(d_{1}, \cdots, d_{n}\right)$ that $d_{i}=0$ or 1 for $i=1,2, \cdots, n$, such that $f(A, D)=f(B, D)=f(C, D)=\frac{d}{2}$.

