

AoPS Community

National Math Olympiad (Second Round) 2000

www.artofproblemsolving.com/community/c3884 by erdos, Amir Hossein

Day	1
-----	---

1 21 distinct numbers are chosen from the set $\{1, 2, 3, ..., 2046\}$. Prove that we can choose three distinct numbers a, b, c among those 21 numbers such that

$$bc < 2a^2 < 4bc$$

2 The points *D*, *E* and *F* are chosen on the sides *BC*, *AC* and *AB* of triangle *ABC*, respectively. Prove that triangles *ABC* and *DEF* have the same centroid if and only if

$$\frac{BD}{DC} = \frac{CE}{EA} = \frac{AF}{FB}$$

3 Let $M = \{1, 2, 3, ..., 10000\}$. Prove that there are 16 subsets of M such that for every $a \in M$, there exist 8 of those subsets that intersection of the sets is exactly $\{a\}$.

Day 2

- **1** Find all positive integers n such that we can divide the set $\{1, 2, 3, ..., n\}$ into three sets with the same sum of members.
- 2 In a tetrahedron we know that sum of angles of all vertices is 180° . (e.g. for vertex *A*, we have $\angle BAC + \angle CAD + \angle DAB = 180^{\circ}$.) Prove that faces of this tetrahedron are four congruent triangles.
- **3** Super number is a sequence of numbers 0, 1, 2, ..., 9 such that it has infinitely many digits at left. For example ... 3030304 is a *super number*. Note that all of positive integers are *super numbers*, which have zeros before they're original digits (for example we can represent the number 4 as ..., 00004). Like positive integers, we can add up and multiply *super numbers*. For example:

 $\begin{array}{r} \dots 3030304 \\ + \dots 4571378 \\ \hline \\ \dots 7601682 \end{array}$

And

2000 Iran MO (2nd round)

AoPS Community

$\begin{array}{c} \dots 3030304 \\ \times \dots 4571378 \end{array}$
4242432
212128
90912
0304
128
20
6
5038912

a) Suppose that *A* is a *super number*. Prove that there exists a *super number B* such that $A + B = \stackrel{\leftarrow}{0}$ (Note: $\stackrel{\leftarrow}{0}$ means a super number that all of its digits are zero).

b) Find all super numbers A for which there exists a super number B such that $A \times B = \stackrel{\leftarrow}{0} 1$ (Note: $\stackrel{\leftarrow}{0} 1$ means the super number ... 00001).

c) Is this true that if $A \times B = \stackrel{\leftarrow}{0}$, then $A = \stackrel{\leftarrow}{0}$ or $B = \stackrel{\leftarrow}{0}$? Justify your answer.

AoPS Online 🔯 AoPS Academy 🗿 AoPS & CADEMY