AoPS Community

National Math Olympiad (Second Round) 2000

www.artofproblemsolving.com/community/c3884
by erdos, Amir Hossein

Day 1

121 distinct numbers are chosen from the set $\{1,2,3, \ldots, 2046\}$. Prove that we can choose three distinct numbers a, b, c among those 21 numbers such that

$$
b c<2 a^{2}<4 b c
$$

2 The points D, E and F are chosen on the sides $B C, A C$ and $A B$ of triangle $A B C$, respectively. Prove that triangles $A B C$ and $D E F$ have the same centroid if and only if

$$
\frac{B D}{D C}=\frac{C E}{E A}=\frac{A F}{F B}
$$

3 Let $M=\{1,2,3, \ldots, 10000\}$. Prove that there are 16 subsets of M such that for every $a \in M$, there exist 8 of those subsets that intersection of the sets is exactly $\{a\}$.

Day 2

1 Find all positive integers n such that we can divide the set $\{1,2,3, \ldots, n\}$ into three sets with the same sum of members.

2 In a tetrahedron we know that sum of angles of all vertices is 180°. (e.g. for vertex A, we have $\angle B A C+\angle C A D+\angle D A B=180^{\circ}$.)
Prove that faces of this tetrahedron are four congruent triangles.
3 Super number is a sequence of numbers $0,1,2, \ldots, 9$ such that it has infinitely many digits at left. For example . . . 3030304 is a super number. Note that all of positive integers are super numbers, which have zeros before they're original digits (for example we can represent the number 4 as $\ldots, 00004$). Like positive integers, we can add up and multiply super numbers. For example:
... 3030304
$+\ldots 4571378$
... 7601682
And

$\ldots .3030304$
$\times \ldots 4571378$
$\ldots 4242432$
$\ldots 212128$
$\ldots 90912$
$\ldots 0304$
$\ldots 128$
$\ldots 20$
$\ldots 6$

a) Suppose that A is a super number. Prove that there exists a super number B such that $A+$ $B=\overleftarrow{0}$ (Note: $\overleftarrow{0}$ means a super number that all of its digits are zero)
b) Find all super numbers A for which there exists a super number B such that $A \times B=\overleftarrow{0} 1$ (Note: $\overleftarrow{0} 1$ means the super number ...00001).
c) Is this true that if $A \times B=\overleftarrow{0}$, then $A=\overleftarrow{0}$ or $B=\overleftarrow{0}$? Justify your answer.

