Art of Problem Solving

AoPS Community

National Math Olympiad (Second Round) 2001
www.artofproblemsolving.com/community/c3885
by sororak

Day 1

1 Let n be a positive integer and p be a prime number such that $n p+1$ is a perfect square. Prove that $n+1$ can be written as the sum of p perfect squares.

2 Let $A B C$ be an acute triangle. We draw 3 triangles $B^{\prime} A C, C^{\prime} A B, A^{\prime} B C$ on the sides of $\triangle A B C$ at the out sides such that:

$$
\angle B^{\prime} A C=\angle C^{\prime} B A=\angle A^{\prime} B C=30^{\circ} \quad, \quad \angle B^{\prime} C A=\angle C^{\prime} A B=\angle A^{\prime} C B=60^{\circ}
$$

If M is the midpoint of side $B C$, prove that $B^{\prime} M$ is perpendicular to $A^{\prime} C^{\prime}$.
3 Find all positive integers n such that we can put n equal squares on the plane that their sides are horizontal and vertical and the shape after putting the squares has at least 3 axises.

Day 2

1 Find all polynomials P with real coefficients such that $\forall x \in \mathbb{R}$ we have:

$$
P(2 P(x))=2 P(P(x))+2(P(x))^{2} .
$$

2 In triangle $A B C, A B>A C$. The bisectors of $\angle B, \angle C$ intersect the sides $A C, A B$ at P, Q, respectively. Let I be the incenter of $\triangle A B C$. Suppose that $I P=I Q$. How much isthe value of $\angle A$?

3 Suppose a table with one row and infinite columns. We call each 1×1 square a room. Let the table be finite from left. We number the rooms from left to ∞. We have put in some rooms some coins (A room can have more than one coin.). We can do 2 below operations: a) If in 2 adjacent rooms, there are some coins, we can move one coin from the left room 2 rooms to right and delete one room from the right room. b) If a room whose number is 3 or more has more than 1 coin, we can move one of its coins 1 room to right and move one other coin 2 rooms to left.
i) Prove that for any initial configuration of the coins, after a finite number of movements, we cannot do anything more. $i i$) Suppose that there is exactly one coin in each room from 1 to n. Prove that by doing the allowed operations, we cannot put any coins in the room $n+2$ or the righter rooms.

