

AoPS Community

National Math Olympiad (Second Round) 2001

www.artofproblemsolving.com/community/c3885 by sororak

Day 1

1	Let n be a positive integer and p be a prime number such that $np+1$ is a perfect square. Prove that $n+1$ can be written as the sum of p perfect squares.
2	Let <i>ABC</i> be an acute triangle. We draw 3 triangles $B'AC, C'AB, A'BC$ on the sides of $\triangle ABC$ at the out sides such that:
	$\angle B'AC = \angle C'BA = \angle A'BC = 30^{\circ}$, $\angle B'CA = \angle C'AB = \angle A'CB = 60^{\circ}$
	If M is the midpoint of side BC , prove that $B'M$ is perpendicular to $A'C'$.
3	Find all positive integers n such that we can put n equal squares on the plane that their sides are horizontal and vertical and the shape after putting the squares has at least 3 axises.
Day 2	2
1	Find all polynomials P with real coefficients such that $\forall x \in \mathbb{R}$ we have:
	$P(2P(x)) = 2P(P(x)) + 2(P(x))^{2}.$
2	In triangle <i>ABC</i> , <i>AB</i> > <i>AC</i> . The bisectors of $\angle B$, $\angle C$ intersect the sides <i>AC</i> , <i>AB</i> at <i>P</i> , <i>Q</i> , respectively. Let <i>I</i> be the incenter of $\triangle ABC$. Suppose that $IP = IQ$. How much is the value of $\angle A$?
`	Suppose a table with one row and infinite columns. We call each 1×1 square a room Lat the

3 Suppose a table with one row and infinite columns. We call each 1×1 square a *room*. Let the table be finite from left. We number the rooms from left to ∞ . We have put in some rooms some coins (A room can have more than one coin.). We can do 2 below operations: *a*) If in 2 adjacent rooms, there are some coins, we can move one coin from the left room 2 rooms to right and delete one room from the right room. *b*) If a room whose number is 3 or more has more than 1 coin, we can move one of its coins 1 room to right and move one other coin 2 rooms to left.

i) Prove that for any initial configuration of the coins, after a finite number of movements, we cannot do anything more. *ii*) Suppose that there is exactly one coin in each room from 1 to n. Prove that by doing the allowed operations, we cannot put any coins in the room n + 2 or the righter rooms.

AoPS Online 🔇 AoPS Academy 🔇 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.