AoPS Community

National Math Olympiad (Second Round) 2002

www.artofproblemsolving.com/community/c3886
by Bugi, Amir Hossein, Iomos_lupin

1 Let $n \in \mathbb{N}$ and A_{n} set of all permutations $\left(a_{1}, \ldots, a_{n}\right)$ of the set $\{1,2, \ldots, n\}$ for which

$$
k \mid 2\left(a_{1}+\cdots+a_{k}\right), \text { for all } 1 \leq k \leq n .
$$

Find the number of elements of the set A_{n}.
Proposed by Vidan Govedarica, Serbia
2 A rectangle is partitioned into finitely many small rectangles. We call a point a cross point if it belongs to four different small rectangles. We call a segment on the obtained diagram maximal if there is no other segment containing it. Show that the number of maximal segments plus the number of cross points is 3 more than the number of small rectangles.

3 In a convex quadrilateral $A B C D$ with $\angle A B C=\angle A D C=135^{\circ}$, points M and N are taken on the rays $A B$ and $A D$ respectively such that $\angle M C D=\angle N C B=90^{\circ}$. The circumcircles of triangles $A M N$ and $A B D$ intersect at A and K. Prove that $A K \perp K C$.

4 Let A and B be two fixed points in the plane. Consider all possible convex quadrilaterals $A B C D$ with $A B=B C, A D=D C$, and $\angle A D C=90^{\circ}$. Prove that there is a fixed point P such that, for every such quadrilateral $A B C D$ on the same side of $A B$, the line $D C$ passes through P.
$5 \quad$ Let δ be a symbol such that $\delta \neq 0$ and $\delta^{2}=0$. Define $\mathbb{R}[\delta]=\{a+b \delta \mid a, b \in \mathbb{R}\}$, where $a+b \delta=c+d \delta$ if and only if $a=c$ and $b=d$, and define

$$
\begin{gathered}
(a+b \delta)+(c+d \delta)=(a+c)+(b+d) \delta \\
(a+b \delta) \cdot(c+d \delta)=a c+(a d+b c) \delta
\end{gathered}
$$

Let $P(x)$ be a polynomial with real coefficients. Show that $P(x)$ has a multiple real root if and only if $P(x)$ has a non-real root in $\mathbb{R}[\delta]$.

6 Let G be a simple graph with 100 edges on 20 vertices. Suppose that we can choose a pair of disjoint edges in 4050 ways. Prove that G is regular.

