Art of Problem Solving

AoPS Community

National Math Olympiad (Second Round) 2003

www.artofproblemsolving.com/community/c3887
by sororak

Day 1

1 We call the positive integer n a 3-stratum number if we can divide the set of its positive divisors into 3 subsets such that the sum of each subset is equal to the others. a) Find a 3-stratum number. b) Prove that there are infinitely many 3 -stratum numbers.

2 In a village, there are n houses with $n>2$ and all of them are not collinear. We want to generate a water resource in the village. For doing this, point A is better than point B if the sum of the distances from point A to the houses is less than the sum of the distances from point B to the houses. We call a point ideal if there doesnt exist any better point than it. Prove that there exist at most 1 ideal point to generate the resource.
$3 n$ volleyball teams have competed to each other (each 2 teams have competed exactly 1 time.). For every 2 distinct teams like A, B, there exist exactly t teams which have lost their match with A, B. Prove that $n=4 t+3$. (Notabene that in volleyball, there doesnt exist tie!)

Day 2

1 Let $x, y, z \in \mathbb{R}$ and $x y z=-1$. Prove that:

$$
x^{4}+y^{4}+z^{4}+3(x+y+z) \geq \frac{x^{2}}{y}+\frac{x^{2}}{z}+\frac{y^{2}}{x}+\frac{y^{2}}{z}+\frac{z^{2}}{x}+\frac{z^{2}}{y} .
$$

$2 \angle A$ is the least angle in $\triangle A B C$. Point D is on the arc $B C$ from the circumcircle of $\triangle A B C$. The perpendicular bisectors of the segments $A B, A C$ intersect the line $A D$ at M, N, respectively. Point T is the meet point of $B M, C N$. Suppose that R is the radius of the circumcircle of $\triangle A B C$. Prove that:

$$
B T+C T \leq 2 R .
$$

3 We have a chessboard and we call a 1×1 square a room. A robot is standing on one arbitrary vertex of the rooms. The robot starts to move and in every one movement, he moves one side of a room. This robot has 2 memories A, B. At first, the values of A, B are 0 . In each movement, if he goes up, 1 unit is added to A, and if he goes down, 1 unit is waned from A, and if he goes right, the value of A is added to B, and if he goes left, the value of A is waned from B. Suppose that the robot has traversed a traverse (!) which hasnt intersected itself and finally, he has
come back to its initial vertex. If $v(B)$ is the value of B in the last of the traverse, prove that in this traverse, the interior surface of the shape that the robot has moved on its circumference is equal to $|v(B)|$.

