Art of Problem Solving

AoPS Community

National Math Olympiad (Second Round) 2005
www.artofproblemsolving.com/community/c3889
by sororak

Day 1

$1 \quad$ Let $n, p>1$ be positive integers and p be prime. We know that $n \mid p-1$ and $p \mid n^{3}-1$. Prove that $4 p-3$ is a perfect square.

2 In triangle $A B C, \angle A=60^{\circ}$. The point D changes on the segment $B C$. Let O_{1}, O_{2} be the circumcenters of the triangles $\triangle A B D, \triangle A C D$, respectively. Let M be the meet point of $B O_{1}, C O_{2}$ and let N be the circumcenter of $\triangle D O_{1} O_{2}$. Prove that, by changing D on $B C$, the line $M N$ passes through a constant point.

3 In one galaxy, there exist more than one million stars. Let M be the set of the distances between any 2 of them. Prove that, in every moment, M has at least 79 members. (Suppose each star as a point.)

Day 2

1 We have a $2 \times n$ rectangle. We call each 1×1 square a room and we show the room in the $i^{t h}$ row and $j^{\text {th }}$ column as (i, j). There are some coins in some rooms of the rectangle. If there exist more than 1 coin in each room, we can delete 2 coins from it and add 1 coin to its right adjacent room OR we can delete 2 coins from it and add 1 coin to its up adjacent room. Prove that there exists a finite configuration of allowable operations such that we can put a coin in the room $(1, n)$.
$2 \quad B C$ is a diameter of a circle and the points X, Y are on the circle such that $X Y \perp B C$. The points P, M are on $X Y, C Y$ (or their stretches), respectively, such that $C Y \| P B$ and $C X \| P M$. Let K be the meet point of the lines $X C, B P$. Prove that $P B \perp M K$.
$3 \quad$ Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that for all positive real numbers x and y, the following equation holds:

$$
(x+y) f(f(x) y)=x^{2} f(f(x)+f(y)) .
$$

