Art of Problem Solving

AoPS Community

National Math Olympiad (Second Round) 2007
www.artofproblemsolving.com/community/c3891
by sororak

Day 1

1 In triangle $A B C, \angle A=90^{\circ}$ and M is the midpoint of $B C$. Point D is chosen on segment $A C$ such that $A M=A D$ and P is the second meet point of the circumcircles of triangles $\triangle A M C, \triangle B D C$. Prove that the line $C P$ bisects $\angle A C B$.

2 Two vertices of a cube are A, O such that $A O$ is the diagonal of one its faces. A n-run is a sequence of $n+1$ vertices of the cube such that each 2 consecutive vertices in the sequence are 2 ends of one side of the cube. Is the 1386-runs from O to itself less than 1386-runs from O to A or more than it?

3 In a city, there are some buildings. We say the building A is dominant to the building B if the line that connects upside of A to upside of B makes an angle more than 45° with earth. We want to make a building in a given location. Suppose none of the buildings are dominant to each other. Prove that we can make the building with a height such that again, none of the buildings are dominant to each other. (Suppose the city as a horizontal plain and each building as a perpendicular line to the plain.)

Day 2

1 Prove that for every positive integer n, there exist n positive integers such that the sum of them is a perfect square and the product of them is a perfect cube.

2 Tow circles C, D are exterior tangent to each other at point P. Point A is in the circle C. We draw 2 tangents $A M, A N$ from A to the circle D (M, N are the tangency points.). The second meet points of $A M, A N$ with C are E, F, respectively. Prove that $\frac{P E}{P F}=\frac{M E}{N F}$.

3 Farhad has made a machine. When the machine starts, it prints some special numbers. The property of this machine is that for every positive integer n, it prints exactly one of the numbers $n, 2 n, 3 n$. We know that the machine prints 2 . Prove that it doesn't print 13824.

