Art of Problem Solving

AoPS Community

National Math Olympiad (Second Round) 2008

www.artofproblemsolving.com/community/c3892
by sororak

Day 1

1 In how many ways, can we draw $n-3$ diagonals of a n-gon with equal sides and equal angles such that: i) none of them intersect each other in the polygonal. $i i$) each of the produced triangles has at least one common side with the polygonal.

2 Let I_{a} be the A-excenter of $\triangle A B C$ and the A-excircle of $\triangle A B C$ be tangent to the lines $A B, A C$ at B^{\prime}, C^{\prime}, respectively. $I_{a} B, I_{a} C$ meet $B^{\prime} C^{\prime}$ at P, Q, respectively. M is the meet point of $B Q, C P$. Prove that the length of the perpendicular from M to $B C$ is equal to r where r is the radius of incircle of $\triangle A B C$.

3 Let a, b, c, and d be real numbers such that at least one of c and d is non-zero. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined as $f(x)=\frac{a x+b}{c x+d}$. Suppose that for all $x \in \mathbb{R}$, we have $f(x) \neq x$. Prove that if there exists some real number a for which $f^{1387}(a)=a$, then for all x in the domain of f^{1387}, we have $f^{1387}(x)=x$. Notice that in this problem,

$$
f^{1387}(x)=\underbrace{f(f(\cdots(f(x))) \cdots)}_{1387 \text { times }} .
$$

Hint. Prove that for every function $g(x)=\frac{s x+t}{u x+v}$, if the equation $g(x)=x$ has more than 2 roots, then $g(x)=x$ for all $x \in \mathbb{R}-\left\{\frac{-v}{u}\right\}$.

Day 2

$1 \quad \mathbb{N}$ is the set of positive integers and $a \in \mathbb{N}$. We know that for every $n \in \mathbb{N}, 4\left(a^{n}+1\right)$ is a perfect cube. Prove that $a=1$.

2 We want to choose telephone numbers for a city. The numbers have 10 digits and 0 isnt used in the numbers. Our aim is: We dont choose some numbers such that every 2 telephone numbers are different in more than one digit OR every 2 telephone numbers are different in a digit which is more than 1 . What is the maximum number of telephone numbers which can be chosen? In how many ways, can we choose the numbers in this maximum situation?

3 In triangle $A B C, H$ is the foot of perpendicular from A to $B C . O$ is the circumcenter of $\triangle A B C$. T, T^{\prime} are the feet of perpendiculars from H to $A B, A C$, respectively. We know that $A C=2 O T$. Prove that $A B=2 O T^{\prime}$.

