Art of Problem Solving

AoPS Community

National Math Olympiad (Second Round) 2012

www.artofproblemsolving.com/community/c3896
by goldeneagle, goodar2006

Day 1

1 Consider a circle C_{1} and a point O on it. Circle C_{2} with center O, intersects C_{1} in two points P and $Q . C_{3}$ is a circle which is externally tangent to C_{2} at R and internally tangent to C_{1} at S and suppose that $R S$ passes through Q. Suppose X and Y are second intersection points of $P R$ and $O R$ with C_{1}. Prove that $Q X$ is parallel with $S Y$.

2 Suppose n is a natural number. In how many ways can we place numbers $1,2, \ldots, n$ around a circle such that each number is a divisor of the sum of it's two adjacent numbers?

3 Prove that if t is a natural number then there exists a natural number $n>1$ such that $(n, t)=1$ and none of the numbers $n+t, n^{2}+t, n^{3}+t, \ldots$. are perfect powers.

Day 2

1 a) Do there exist 2-element subsets $A_{1}, A_{2}, A_{3}, \ldots$ of natural numbers such that each natural number appears in exactly one of these sets and also for each natural number n, sum of the elements of A_{n} equals $1391+n$?
b) Do there exist 2-element subsets $A_{1}, A_{2}, A_{3}, \ldots$ of natural numbers such that each natural number appears in exactly one of these sets and also for each natural number n, sum of the elements of A_{n} equals $1391+n^{2}$?
Proposed by Morteza Saghafian
2 Consider the second degree polynomial $x^{2}+a x+b$ with real coefficients. We know that the necessary and sufficient condition for this polynomial to have roots in real numbers is that its discriminant, $a^{2}-4 b$ be greater than or equal to zero. Note that the discriminant is also a polynomial with variables a and b. Prove that the same story is not true for polynomials of degree 4: Prove that there does not exist a 4 variable polynomial $P(a, b, c, d)$ such that:

The fourth degree polynomial $x^{4}+a x^{3}+b x^{2}+c x+d$ can be written as the product of four 1st degree polynomials if and only if $P(a, b, c, d) \geq 0$. (All the coefficients are real numbers.)
Proposed by Sahand Seifnashri
3 The incircle of triangle $A B C$, is tangent to sides $B C, C A$ and $A B$ in D, E and F respectively. The reflection of F with respect to B and the reflection of E with respect to C are T and S
respectively. Prove that the incenter of triangle $A S T$ is inside or on the incircle of triangle $A B C$.

Proposed by Mehdi E'tesami Fard

