AoPS Community

www.artofproblemsolving.com/community/c389682
by I1090107005, dcouchman, sqing, termas

- Let p and $p+2$ be primes, $p>3$. Sequence $\left\{a_{n}\right\}: a_{1}=2, a_{n}=a_{n-1}+\left\lceil\frac{p a_{n-1}}{n}\right\rceil$. Prove that $n \mid p a_{n-1}+1$ for all $n=3,4, \ldots, p-1$.

- \quad Test 1

Q10 Let $f(x)$ is an odd function on $R, f(1)=1$ and $f\left(\frac{x}{x-1}\right)=x f(x)(\forall x<0)$. Find the value of $f(1) f\left(\frac{1}{100}\right)+f\left(\frac{1}{2}\right) f\left(\frac{1}{99}\right)+f\left(\frac{1}{3}\right) f\left(\frac{1}{98}\right)+\cdots+f\left(\frac{1}{50}\right) f\left(\frac{1}{51}\right)$.

- \quad Test 2

1 Let $a_{1}, a_{2}, \ldots, a_{2016}$ be real numbers such that $9 a_{i} \geq 11 a_{i+1}^{2}(i=, 2, \cdots, 2015)$.
Find the maximum value of $\left(a_{1}-a_{2}^{2}\right)\left(a_{2}-a_{3}^{2}\right) \cdots\left(a_{2015}-a_{2016}^{2}\right)\left(a_{2016}-a_{1}^{2}\right)$.
2 Let X, Y be two points which lies on the line $B C$ of $\triangle A B C(X, B, C, Y$ lies in sequence) such that $B X \cdot A C=C Y \cdot A B, O_{1}, O_{2}$ are the circumcenters of $\triangle A C X, \triangle A B Y, O_{1} O_{2} \cap A B=$ $U, O_{1} O_{2} \cap A C=V$. Prove that $\triangle A U V$ is a isosceles triangle.

3 Given 10 points in the space such that each 4 points are not lie on a plane. Connect some points with some segments such that there are no triangles or quadrangles. Find the maximum number of the segments.

4 Let $p>3$ and $p+2$ are prime numbers, and define sequence

$$
a_{1}=2, a_{n}=a_{n-1}+\left\lfloor\frac{p a_{n-1}}{n}\right\rfloor
$$

show that:for any $n=3,4, \cdots, p-1$ have

$$
n \mid p a_{n-1}+1
$$

