

AoPS Community

2013 Iran MO (2nd Round)

National Math Olympiad (Second Round) 2013

www.artofproblemsolving.com/community/c3897 by dan23, War-Hammer

Day 2	
3	Let <i>M</i> be the midpoint of (the smaller) arc <i>BC</i> in circumcircle of triangle <i>ABC</i> . Suppose that the altitude drawn from <i>A</i> intersects the circle at <i>N</i> . Draw two lines through circumcenter <i>O</i> of <i>ABC</i> paralell to <i>MB</i> and <i>MC</i> , which intersect <i>AB</i> and <i>AC</i> at <i>K</i> and <i>L</i> , respectively. Prove that $NK = NL$.
2	Let <i>n</i> be a natural number and suppose that w_1, w_2, \ldots, w_n are <i>n</i> weights. We call the set of $\{w_1, w_2, \ldots, w_n\}$ to be a <i>Perfect Set</i> if we can achieve all of the $1, 2, \ldots, W$ weights with sums of w_1, w_2, \ldots, w_n , where $W = \sum_{i=1}^n w_i$. Prove that if we delete the maximum weight of a Perfect Set, the other weights make again a Perfect Set.
1	Find all pairs (a, b) of positive integers for which $gcd(a, b) = 1$, and $\frac{a}{b} = \overline{b.a}$. (For example, if $a = 92$ and $b = 13$, then $b/a = 13.92$)

1 Let P be a point out of circle C. Let PA and PB be the tangents to the circle drawn from C. Choose a point K on AB. Suppose that the circumcircle of triangle PBK intersects C again at T. Let P' be the reflection of P with respect to A. Prove that

$$\angle PBT = \angle P'KA$$

2 Suppose a $m \times n$ table. We write an integer in each cell of the table. In each move, we chose a column, a row, or a diagonal (diagonal is the set of cells which the difference between their row number and their column number is constant) and add either +1 or -1 to all of its cells. Prove that if for all arbitrary 3×3 table we can change all numbers to zero, then we can change all numbers of $m \times n$ table to zero.

(*Hint*: First of all think about it how we can change number of 3×3 table to zero.)

3 Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive integers for which

$$a_{n+2} = \left[\frac{2a_n}{a_{n+1}}\right] + \left[\frac{2a_{n+1}}{a_n}\right].$$

Prove that there exists a positive integer m such that $a_m = 4$ and $a_{m+1} \in \{3, 4\}$.

AoPS Community

Note. [x] is the greatest integer not exceeding x.

Act of Problem Solving is an ACS WASC Accredited School.