AoPS Online

AoPS Community

2009 BMO TST

BMO TST 2009

www.artofproblemsolving.com/community/c3906 by ridgers

- Given the equation x⁴ x³ 1 = 0
 (a) Find the number of its real roots.
 (b) We denote by S the sum of the real roots and by P their product. Prove that P < -¹¹/₁₀ and S > ⁶/₁₁.
 Let C₁ and C₂ be concentric circles, with C₂ in the interior of C₁. From a point A on C₁, draw
- Let C_1 and C_2 be concentric circles, with C_2 in the interior of C_1 . From a point A on C_1 , draw the tangent AB to C_2 ($B \in C_2$). Let C be the second point of intersection of AB and C_1 , and let D be the midpoint of AB. A line passing through A intersects C_2 at E and F in such a way that the perpendicular bisectors of DE and CF intersect at a point M on AB. Find, with proof, the ratio AM/MC.

This question is taken from Mathematical Olympiad Challenges , the 9-th exercise in 1.3 Power of a Point.

- For the give functions in N:
 (a) Euler's φ function (φ(n)- the number of natural numbers smaller than n and coprime with n);
 (b) the σ function such that the σ(n) is the sum of natural divisors of n. solve the equation φ(σ(2^x)) = 2^x.
- **4** Find all the polynomials P(x) of a degree $\leq n$ with real non-negative coefficients such that $P(x) \cdot P(\frac{1}{x}) \leq [P(1)]^2$, $\forall x > 0$.

Art of Problem Solving is an ACS WASC Accredited School.