AoPS Community

BMO TST 2009

www.artofproblemsolving.com/community/c3906
by ridgers

1 Given the equation $x^{4}-x^{3}-1=0$
(a) Find the number of its real roots.
(b) We denote by S the sum of the real roots and by P their product. Prove that $P<-\frac{11}{10}$ and $S>\frac{6}{11}$.

2 Let C_{1} and C_{2} be concentric circles, with C_{2} in the interior of C_{1}. From a point A on C_{1}, draw the tangent $A B$ to $C_{2}\left(B \in C_{2}\right)$. Let C be the second point of intersection of $A B$ and C_{1},and let D be the midpoint of $A B$. A line passing through A intersects C_{2} at E and F in such a way that the perpendicular bisectors of $D E$ and $C F$ intersect at a point M on $A B$. Find, with proof, the ratio $A M / M C$.
This question is taken from Mathematical Olympiad Challenges, the 9-th exercise in 1.3 Power of a Point.
$3 \quad$ For the give functions in \mathbb{N} :
(a) Euler's ϕ function ($\phi(n)$ - the number of natural numbers smaller than n and coprime with n);
(b) the σ function such that the $\sigma(n)$ is the sum of natural divisors of n.
solve the equation $\phi\left(\sigma\left(2^{x}\right)\right)=2^{x}$.
4 Find all the polynomials $P(x)$ of a degree $\leq n$ with real non-negative coefficients such that $P(x) \cdot P\left(\frac{1}{x}\right) \leq[P(1)]^{2}, \forall x>0$.

