AoPS Community

BMO TST 2014

www.artofproblemsolving.com/community/c3909
by Olemissmath

1 Prove that for $n \geq 2$ the following inequality holds:

$$
\frac{1}{n+1}\left(1+\frac{1}{3}+\ldots+\frac{1}{2 n-1}\right)>\frac{1}{n}\left(\frac{1}{2}+\ldots+\frac{1}{2 n}\right) .
$$

2 Solve the following equation in \mathbb{R} :

$$
\left(x-\frac{1}{x}\right)^{\frac{1}{2}}+\left(1-\frac{1}{x}\right)^{\frac{1}{2}}=x .
$$

3 From the point P outside a circle ω with center O draw the tangents $P A$ and $P B$ where A and B belong to ω.In a random point M in the chord $A B$ we draw the perpendicular to $O M$, which intersects $P A$ and $P B$ in C and D. Prove that M is the midpoint $C D$.
$4 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) f(y)=f(x+y)+x y$ for all $x, y \in \mathbb{R}$.
$5 \quad$ Find all non-negative integers k, n which satisfy $2^{2 k+1}+9 \cdot 2^{k}+5=n^{2}$.

