AoPS Community

IMO Shortlist 1972

www.artofproblemsolving.com/community/c3923
by orl, srulikbd, brian_gold, Amir Hossein, ehsan2004
$1 \quad f$ and g are real-valued functions defined on the real line. For all x and $y, f(x+y)+f(x-y)=$ $2 f(x) g(y)$. f is not identically zero and $|f(x)| \leq 1$ for all x. Prove that $|g(x)| \leq 1$ for all x.

2 We are given $3 n$ points $A_{1}, A_{2}, \ldots, A_{3 n}$ in the plane, no three of them collinear. Prove that one can construct n disjoint triangles with vertices at the points A_{i}.

3 The least number is m and the greatest number is M among $a_{1}, a_{2}, \ldots, a_{n}$ satisfying $a_{1}+a_{2}+$ $\ldots+a_{n}=0$. Prove that

$$
a_{1}^{2}+\cdots+a_{n}^{2} \leq-n m M
$$

4 Let n_{1}, n_{2} be positive integers. Consider in a plane E two disjoint sets of points M_{1} and M_{2} consisting of $2 n_{1}$ and $2 n_{2}$ points, respectively, and such that no three points of the union $M_{1} \cup$ M_{2} are collinear. Prove that there exists a straightline g with the following property: Each of the two half-planes determined by g on E (g not being included in either) contains exactly half of the points of M_{1} and exactly half of the points of M_{2}.

5 Prove the following assertion: The four altitudes of a tetrahedron $A B C D$ intersect in a point if and only if

$$
A B^{2}+C D^{2}=B C^{2}+A D^{2}=C A^{2}+B D^{2}
$$

6 Show that for any $n \not \equiv 0(\bmod 10)$ there exists a multiple of n not containing the digit 0 in its decimal expansion.

7 Given four distinct parallel planes, prove that there exists a regular tetrahedron with a vertex on each plane.
$8 \quad$ Prove that $(2 m)!(2 n)$! is a multiple of $m!n!(m+n)!$ for any non-negative integers m and n.

9 Find all positive real solutions to:

$$
\begin{aligned}
\left(x_{1}^{2}-x_{3} x_{5}\right)\left(x_{2}^{2}-x_{3} x_{5}\right) & \leq 0 \\
\left(x_{2}^{2}-x_{4} x_{1}\right)\left(x_{3}^{2}-x_{4} x_{1}\right) & \leq 0 \\
\left(x_{3}^{2}-x_{5} x_{2}\right)\left(x_{4}^{2}-x_{5} x_{2}\right) & \leq 0 \\
\left(x_{4}^{2}-x_{1} x_{3}\right)\left(x_{5}^{2}-x_{1} x_{3}\right) & \leq 0 \\
\left(x_{5}^{2}-x_{2} x_{4}\right)\left(x_{1}^{2}-x_{2} x_{4}\right) & \leq 0
\end{aligned}
$$

10 Given $n>4$, prove that every cyclic quadrilateral can be dissected into n cyclic quadrilaterals.

11 Consider a sequence of circles $K_{1}, K_{2}, K_{3}, K_{4}, \ldots$ of radii $r_{1}, r_{2}, r_{3}, r_{4}, \ldots$, respectively, situated inside a triangle $A B C$. The circle K_{1} is tangent to $A B$ and $A C ; K_{2}$ is tangent to $K_{1}, B A$, and $B C$; K_{3} is tangent to $K_{2}, C A$, and $C B ; K_{4}$ is tangent to $K_{3}, A B$, and $A C$; etc.
(a) Prove the relation

$$
r_{1} \cot \frac{1}{2} A+2 \sqrt{r_{1} r_{2}}+r_{2} \cot \frac{1}{2} B=r\left(\cot \frac{1}{2} A+\cot \frac{1}{2} B\right)
$$

where r is the radius of the incircle of the triangle $A B C$. Deduce the existence of $a t_{1}$ such that

$$
r_{1}=r \cot \frac{1}{2} B \cot \frac{1}{2} C \sin ^{2} t_{1}
$$

(b) Prove that the sequence of circles K_{1}, K_{2}, \ldots is periodic.

12 Prove that from a set of ten distinct two-digit numbers, it is always possible to find two disjoint subsets whose members have the same sum.

