AoPS Community

IMO Shortlist 1975

www.artofproblemsolving.com/community/c3926
by Amir Hossein, orl, Peter

1 There are six ports on a lake. Is it possible to organize a series of routes satisfying the following conditions?
(i) Every route includes exactly three ports;
(ii) No two routes contain the same three ports;
(iii) The series offers exactly two routes to each tourist who desires to visit two different arbitrary ports.

2 We consider two sequences of real numbers $x_{1} \geq x_{2} \geq \ldots \geq x_{n}$ and $y_{1} \geq y_{2} \geq \ldots \geq y_{n}$. Let $z_{1}, z_{2}, \ldots, z_{n}$ be a permutation of the numbers $y_{1}, y_{2}, \ldots, y_{n}$. Prove that $\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2} \leq \sum_{i=1}^{n}$ $\left(x_{i}-z_{i}\right)^{2}$.

3 Find the integer represented by $\left[\sum_{n=1}^{10^{9}} n^{-2 / 3}\right]$. Here $[x]$ denotes the greatest integer less than or equal to x.

4 Let $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ be a sequence of real numbers such that $0 \leq a_{n} \leq 1$ and $a_{n}-2 a_{n+1}+$ $a_{n+2} \geq 0$ for $n=1,2,3, \ldots$. Prove that

$$
0 \leq(n+1)\left(a_{n}-a_{n+1}\right) \leq 2 \quad \text { for } n=1,2,3, \ldots
$$

$5 \quad$ Let M be the set of all positive integers that do not contain the digit 9 (base 10). If x_{1}, \ldots, x_{n} are arbitrary but distinct elements in M, prove that

$$
\sum_{j=1}^{n} \frac{1}{x_{j}}<80 .
$$

6 When 4444^{4444} is written in decimal notation, the sum of its digits is A. Let B be the sum of the digits of A. Find the sum of the digits of B. (A and B are written in decimal notation.)

7 Prove that from $x+y=1(x, y \in \mathbb{R})$ it follows that

$$
x^{m+1} \sum_{j=0}^{n}\binom{m+j}{j} y^{j}+y^{n+1} \sum_{i=0}^{m}\binom{n+i}{i} x^{i}=1 \quad(m, n=0,1,2, \ldots) .
$$

8 In the plane of a triangle $A B C$, in its exterior, we draw the triangles $A B R, B C P, C A Q$ so that $\angle P B C=\angle C A Q=45^{\circ}, \angle B C P=\angle Q C A=30^{\circ}, \angle A B R=\angle R A B=15^{\circ}$.

Prove that
a.) $\angle Q R P=90^{\circ}$, and
b.) $Q R=R P$.

9 Let $f(x)$ be a continuous function defined on the closed interval $0 \leq x \leq 1$. Let $G(f)$ denote the graph of $f(x): G(f)=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq 1, y=f(x)\right\}$. Let $G_{a}(f)$ denote the graph of the translated function $f(x-a)$ (translated over a distance a), defined by $G_{a}(f)=\{(x, y) \in$ $\left.\mathbb{R}^{2} \mid a \leq x \leq a+1, y=f(x-a)\right\}$. Is it possible to find for every $a, 0<a<1$, a continuous function $f(x)$, defined on $0 \leq x \leq 1$, such that $f(0)=f(1)=0$ and $G(f)$ and $G_{a}(f)$ are disjoint point sets?

10 Determine the polynomials P of two variables so that:
a.) for any real numbers t, x, y we have $P(t x, t y)=t^{n} P(x, y)$ where n is a positive integer, the same for all t, x, y;
b.) for any real numbers a, b, c we have $P(a+b, c)+P(b+c, a)+P(c+a, b)=0$;
c.) $P(1,0)=1$.

11 Let a_{1}, \ldots, a_{n} be an infinite sequence of strictly positive integers, so that $a_{k}<a_{k+1}$ for any k. Prove that there exists an infinity of terms a_{m}, which can be written like $a_{m}=x \cdot a_{p}+y \cdot a_{q}$ with x, y strictly positive integers and $p \neq q$.

12 Consider on the first quadrant of the trigonometric circle the arcs $A M_{1}=x_{1}, A M_{2}=x_{2}, A M_{3}=$ $x_{3}, \ldots, A M_{v}=x_{v}$, such that $x_{1}<x_{2}<x_{3}<\cdots<x_{v}$. Prove that

$$
\sum_{i=0}^{v-1} \sin 2 x_{i}-\sum_{i=0}^{v-1} \sin \left(x_{i}-x_{i+1}\right)<\frac{\pi}{2}+\sum_{i=0}^{v-1} \sin \left(x_{i}+x_{i+1}\right)
$$

13 Let $A_{0}, A_{1}, \ldots, A_{n}$ be points in a plane such that
(i) $A_{0} A_{1} \leq \frac{1}{2} A_{1} A_{2} \leq \cdots \leq \frac{1}{2^{n-1}} A_{n-1} A_{n}$ and
(ii) $0<\measuredangle A_{0} A_{1} A_{2}<\measuredangle A_{1} A_{2} A_{3}<\cdots<\measuredangle A_{n-2} A_{n-1} A_{n}<180^{\circ}$,
where all these angles have the same orientation. Prove that the segments $A_{k} A_{k+1}, A_{m} A_{m+1}$ do not intersect for each k and n such that $0 \leq k \leq m-2<n-2$.

14 Let $x_{0}=5$ and $x_{n+1}=x_{n}+\frac{1}{x_{n}}(n=0,1,2, \ldots)$. Prove that

$$
45<x_{1000}<45.1
$$

15 Can there be drawn on a circle of radius 1 a number of 1975 distinct points, so that the distance (measured on the chord) between any two points (from the considered points) is a rational number?

