1975 IMO Shortlist

AoPS Community

IMO Shortlist 1975

www.artofproblemsolving.com/community/c3926

by Amir Hossein, orl, Peter

There are six ports on a lake. Is it possible to organize a series of routes satisfying the following conditions ?

 (i) Every route includes exactly three ports;
 (ii) No two routes contain the same three ports;
 (iii) The series offers exactly two routes to each tourist who desires to visit two different arbitrary ports.

 We consider two sequences of real numbers x₁ ≥ x₂ ≥ ... ≥ x_n and y₁ ≥ y₂ ≥ ... ≥ y_n. Let z₁, z₂, ..., z_n be a permutation of the numbers y₁, y₂, ..., y_n. Prove that ∑_{i=1}ⁿ (x_i - y_i)² ≤ ∑_{i=1}ⁿ

 $(x_i - z_i)^2.$

- **3** Find the integer represented by $\left[\sum_{n=1}^{10^9} n^{-2/3}\right]$. Here [x] denotes the greatest integer less than or equal to x.
- **4** Let $a_1, a_2, \ldots, a_n, \ldots$ be a sequence of real numbers such that $0 \le a_n \le 1$ and $a_n 2a_{n+1} + a_{n+2} \ge 0$ for $n = 1, 2, 3, \ldots$ Prove that

$$0 \le (n+1)(a_n - a_{n+1}) \le 2$$
 for $n = 1, 2, 3, \dots$

5 Let *M* be the set of all positive integers that do not contain the digit 9 (base 10). If x_1, \ldots, x_n are arbitrary but distinct elements in *M*, prove that

$$\sum_{j=1}^n \frac{1}{x_j} < 80.$$

6 When 4444⁴⁴⁴⁴ is written in decimal notation, the sum of its digits is *A*. Let *B* be the sum of the digits of *A*. Find the sum of the digits of *B*. (*A* and *B* are written in decimal notation.)

7 Prove that from
$$x + y = 1$$
 $(x, y \in \mathbb{R})$ it follows that

$$x^{m+1} \sum_{j=0}^{n} \binom{m+j}{j} y^{j} + y^{n+1} \sum_{i=0}^{m} \binom{n+i}{i} x^{i} = 1 \qquad (m, n = 0, 1, 2, \ldots).$$

AoPS Community

1975 IMO Shortlist

8 In the plane of a triangle *ABC*, in its exterior, we draw the triangles *ABR*, *BCP*, *CAQ* so that $\angle PBC = \angle CAQ = 45^{\circ}$, $\angle BCP = \angle QCA = 30^{\circ}$, $\angle ABR = \angle RAB = 15^{\circ}$.

Prove that

a.) $\angle QRP = 90^{\circ}$, and

b.) QR = RP.

- 9 Let f(x) be a continuous function defined on the closed interval $0 \le x \le 1$. Let G(f) denote the graph of $f(x) : G(f) = \{(x, y) \in \mathbb{R}^2 | 0 \le x \le 1, y = f(x)\}$. Let $G_a(f)$ denote the graph of the translated function f(x a) (translated over a distance *a*), defined by $G_a(f) = \{(x, y) \in \mathbb{R}^2 | a \le x \le a + 1, y = f(x a)\}$. Is it possible to find for every *a*, 0 < a < 1, a continuous function f(x), defined on $0 \le x \le 1$, such that f(0) = f(1) = 0 and G(f) and $G_a(f)$ are disjoint point sets ?
- **10** Determine the polynomials P of two variables so that:

a.) for any real numbers t, x, y we have $P(tx, ty) = t^n P(x, y)$ where *n* is a positive integer, the same for all t, x, y;

b.) for any real numbers a, b, c we have P(a + b, c) + P(b + c, a) + P(c + a, b) = 0;

c.) P(1,0) = 1.

- 11 Let a_1, \ldots, a_n be an infinite sequence of strictly positive integers, so that $a_k < a_{k+1}$ for any k. Prove that there exists an infinity of terms a_m , which can be written like $a_m = x \cdot a_p + y \cdot a_q$ with x, y strictly positive integers and $p \neq q$.
- **12** Consider on the first quadrant of the trigonometric circle the arcs $AM_1 = x_1, AM_2 = x_2, AM_3 = x_3, \ldots, AM_v = x_v$, such that $x_1 < x_2 < x_3 < \cdots < x_v$. Prove that

$$\sum_{i=0}^{\nu-1} \sin 2x_i - \sum_{i=0}^{\nu-1} \sin(x_i - x_{i+1}) < \frac{\pi}{2} + \sum_{i=0}^{\nu-1} \sin(x_i + x_{i+1})$$

13 Let A_0, A_1, \ldots, A_n be points in a plane such that (i) $A_0A_1 \leq \frac{1}{2}A_1A_2 \leq \cdots \leq \frac{1}{2^{n-1}}A_{n-1}A_n$ and (ii) $0 < \measuredangle A_0A_1A_2 < \measuredangle A_1A_2A_3 < \cdots < \measuredangle A_{n-2}A_{n-1}A_n < 180^\circ$, where all these angles have the same orientation. Prove that the segments A_kA_{k+1}, A_mA_{m+1} do not intersect for each k and n such that $0 \leq k \leq m - 2 < n - 2$.

14 Let $x_0 = 5$ and $x_{n+1} = x_n + \frac{1}{x_n}$ (n = 0, 1, 2, ...). Prove that

 $45 < x_{1000} < 45.1.$

15 Can there be drawn on a circle of radius 1 a number of 1975 distinct points, so that the distance (measured on the chord) between any two points (from the considered points) is a rational number?

Act of Problem Solving is an ACS WASC Accredited School.