AoPS Community

IMO Shortlist 1976

www.artofproblemsolving.com/community/c3927
by Amir Hossein, orl, mathmdmb

1 Let $A B C$ be a triangle with bisectors $A A_{1}, B B_{1}, C C_{1}$ ($A_{1} \in B C$, etc.) and M their common point. Consider the triangles $M B_{1} A, M C_{1} A, M C_{1} B, M A_{1} B, M A_{1} C, M B_{1} C$, and their inscribed circles. Prove that if four of these six inscribed circles have equal radii, then $A B=B C=C A$.

2 Let $a_{0}, a_{1}, \ldots, a_{n}, a_{n+1}$ be a sequence of real numbers satisfying the following conditions:

$$
\begin{gathered}
a_{0}=a_{n+1}=0 \\
\left|a_{k-1}-2 a_{k}+a_{k+1}\right| \leq 1 \quad(k=1,2, \ldots, n) .
\end{gathered}
$$

Prove that $\left|a_{k}\right| \leq \frac{k(n+1-k)}{2} \quad(k=0,1, \ldots, n+1)$.
3 In a convex quadrilateral (in the plane) with the area of $32 \mathrm{~cm}^{2}$ the sum of two opposite sides and a diagonal is 16 cm . Determine all the possible values that the other diagonal can have.

4 A sequence $\left(u_{n}\right)$ is defined by

$$
u_{0}=2 \quad u_{1}=\frac{5}{2}, u_{n+1}=u_{n}\left(u_{n-1}^{2}-2\right)-u_{1} \quad \text { for } n=1, \ldots
$$

Prove that for any positive integer n we have

$$
\left[u_{n}\right]=2^{\frac{\left(2^{n}-(-1)^{n}\right)}{3}}
$$

(where $[x]$ denotes the smallest integer $\leq x$).
5 We consider the following system
with $q=2 p$:

$$
\begin{aligned}
& a_{11} x_{1}+\ldots+a_{1 q} x_{q}=0, \\
& a_{21} x_{1}+\ldots+a_{2 q} x_{q}=0, \\
& \ldots, \\
& a_{p 1} x_{1}+\ldots+a_{p q} x_{q}=0,
\end{aligned}
$$

in which every coefficient is an element from the set $\{-1,0,1\}$. Prove that there exists a solution x_{1}, \ldots, x_{q} for the system with the properties:
a.) all $x_{j}, j=1, \ldots, q$ are integers;
b.) there exists at least one j for which $x_{j} \neq 0$;
c.) $\left|x_{j}\right| \leq q$ for any $j=1, \ldots, q$.

6 A box whose shape is a parallelepiped can be completely filled with cubes of side 1. If we put in it the maximum possible number of cubes, each of volume 2 , with the sides parallel to those of the box, then exactly 40 percent of the volume of the box is occupied. Determine the possible dimensions of the box.

7 Let $I=(0,1]$ be the unit interval of the real line. For a given number $a \in(0,1)$ we define a map $T: I \rightarrow I$ by the formula if

$$
T(x, y)= \begin{cases}x+(1-a), & \text { if } 0<x \leq a \\ x-a, & \text { if } a<x \leq 1\end{cases}
$$

Show that for every interval $J \subset I$ there exists an integer $n>0$ such that $T^{n}(J) \cap J \neq \emptyset$.
$8 \quad$ Let P be a polynomial with real coefficients such that $P(x)>0$ if $x>0$. Prove that there exist polynomials Q and R with nonnegative coefficients such that $P(x)=\frac{Q(x)}{R(x)}$ if $x>0$.

9 Let $P_{1}(x)=x^{2}-2$ and $P_{j}(x)=P_{1}\left(P_{j-1}(x)\right)$ for $\mathbf{j}=2, \ldots$ Prove that for any positive integer n the roots of the equation $P_{n}(x)=x$ are all real and distinct.

10 Determine the greatest number, who is the product of some positive integers, and the sum of these numbers is 1976.

11 Prove that 5^{n} has a block of 1976 consecutive $0^{\prime} s$ in its decimal representation.
12 The polynomial $1976\left(x+x^{2}+\cdots+x^{n}\right)$ is decomposed into a sum of polynomials of the form $a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$, where $a_{1}, a_{2}, \ldots, a_{n}$ are distinct positive integers not greater than n. Find all values of n for which such a decomposition is possible.

