AoPS Community

IMO Shortlist 1980

www.artofproblemsolving.com/community/c3931
by orl

1 Let α, β and γ denote the angles of the triangle $A B C$. The perpendicular bisector of $A B$ intersects $B C$ at the point X, the perpendicular bisector of $A C$ intersects it at Y. Prove that $\tan (\beta) \cdot \tan (\gamma)=3$ implies $B C=X Y$ (or in other words: Prove that a sufficient condition for $B C=X Y$ is $\tan (\beta) \cdot \tan (\gamma)=3$). Show that this condition is not necessary, and give a necessary and sufficient condition for $B C=X Y$.

2 Define the numbers $a_{0}, a_{1}, \ldots, a_{n}$ in the following way:

$$
a_{0}=\frac{1}{2}, \quad a_{k+1}=a_{k}+\frac{a_{k}^{2}}{n} \quad(n>1, k=0,1, \ldots, n-1) .
$$

Prove that

$$
1-\frac{1}{n}<a_{n}<1
$$

3 Prove that the equation

$$
x^{n}+1=y^{n+1} \text {, }
$$

where n is a positive integer not smaller then 2 , has no positive integer solutions in x and y for which x and $n+1$ are relatively prime.

4 Determine all positive integers n such that the following statement holds: If a convex polygon with with $2 n$ sides $A_{1} A_{2} \ldots A_{2 n}$ is inscribed in a circle and $n-1$ of its n pairs of opposite sides are parallel, which means if the pairs of opposite sides

$$
\left(A_{1} A_{2}, A_{n+1} A_{n+2}\right),\left(A_{2} A_{3}, A_{n+2} A_{n+3}\right), \ldots,\left(A_{n-1} A_{n}, A_{2 n-1} A_{2 n}\right)
$$

are parallel, then the sides

$$
A_{n} A_{n+1}, A_{2 n} A_{1}
$$

are parallel as well.
5 In a rectangular coordinate system we call a horizontal line parallel to the x-axis triangular if it intersects the curve with equation

$$
y=x^{4}+p x^{3}+q x^{2}+r x+s
$$

1980 IMO Shortlist

in the points A, B, C and D (from left to right) such that the segments $A B, A C$ and $A D$ are the sides of a triangle. Prove that the lines parallel to the x-axis intersecting the curve in four distinct points are all triangular or none of them is triangular.

6 Find the digits left and right of the decimal point in the decimal form of the number

$$
(\sqrt{2}+\sqrt{3})^{1980}
$$

$7 \quad$ The function f is defined on the set \mathbb{Q} of all rational numbers and has values in \mathbb{Q}. It satisfies the conditions $f(1)=2$ and $f(x y)=f(x) f(y)-f(x+y)+1$ for all $x, y \in \mathbb{Q}$. Determine f.

8 Three points A, B, C are such that $B \in] A C[$. On the side of $A C$ we draw the three semicircles with diameters $[A B],[B C]$ and $[A C]$. The common interior tangent at B to the first two semicircles meets the third circle in E. Let U and V be the points of contact of the common exterior tangent to the first two semi-circles. Denote the area of the triangle $A B C$ as $S(A B C)$. Evaluate the ratio $R=\frac{S(E U V)}{S(E A C)}$ as a function of $r_{1}=\frac{A B}{2}$ and $r_{2}=\frac{B C}{2}$.

9 Let p be a prime number. Prove that there is no number divisible by p in the $n-t h$ row of Pascal's triangle if and only if n can be represented in the form $n=p^{s} q-1$, where s and q are integers with $s \geq 0,0<q<p$.

10 Two circles C_{1} and C_{2} are (externally or internally) tangent at a point P. The straight line D is tangent at A to one of the circles and cuts the other circle at the points B and C. Prove that the straight line $P A$ is an interior or exterior bisector of the angle $\angle B P C$.

11 Ten gamblers started playing with the same amount of money. Each turn they cast (threw) five dice. At each stage the gambler who had thrown paid to each of his 9 opponents $\frac{1}{n}$ times the amount which that opponent owned at that moment. They threw and paid one after the other. At the 10th round (i.e. when each gambler has cast the five dice once), the dice showed a total of 12, and after payment it turned out that every player had exactly the same sum as he had at the beginning. Is it possible to determine the total shown by the dice at the nine former rounds ?

12 Find all pairs of solutions (x, y) :

$$
x^{3}+x^{2} y+x y^{2}+y^{3}=8\left(x^{2}+x y+y^{2}+1\right)
$$

13 Given three infinite arithmetic progressions of natural numbers such that each of the numbers $1,2,3,4,5,6,7$ and 8 belongs to at least one of them, prove that the number 1980 also belongs to at least one of them.

AoPS Community

14 Let $\left\{x_{n}\right\}$ be a sequence of natural numbers such that

$$
(a) 1=x_{1}<x_{2}<x_{3}<\ldots ; \quad(b) x_{2 n+1} \leq 2 n \quad \forall n .
$$

Prove that, for every natural number k, there exist terms x_{r} and x_{s} such that $x_{r}-x_{s}=k$.
15 Prove that the sum of the six angles subtended at an interior point of a tetrahedron by its six edges is greater than 540 .

16 Prove that $\sum \frac{1}{i_{1} i_{2} \ldots i_{k}}=n$ is taken over all non-empty subsets $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ of $\{1,2, \ldots, n\}$. (The k is not fixed, so we are summing over all the $2^{n}-1$ possible nonempty subsets.)

17 Let $A_{1} A_{2} A_{3}$ be a triangle and, for $1 \leq i \leq 3$, let B_{i} be an interior point of edge opposite A_{i}. Prove that the perpendicular bisectors of $A_{i} B_{i}$ for $1 \leq i \leq 3$ are not concurrent.

18 Given a sequence $\left\{a_{n}\right\}$ of real numbers such that $\left|a_{k+m}-a_{k}-a_{m}\right| \leq 1$ for all positive integers k and m, prove that, for all positive integers p and q,

$$
\left|\frac{a_{p}}{p}-\frac{a_{q}}{q}\right|<\frac{1}{p}+\frac{1}{q} .
$$

19 Find the greatest natural number n such there exist natural numbers $x_{1}, x_{2}, \ldots, x_{n}$ and natural $a_{1}<a_{2}<\ldots<a_{n-1}$ satisfying the following equations for $i=1,2, \ldots, n-1$:

$$
x_{1} x_{2} \ldots x_{n}=1980 \quad \text { and } \quad x_{i}+\frac{1980}{x_{i}}=a_{i} .
$$

20 Let S be a set of 1980 points in the plane such that the distance between every pair of them is at least 1 . Prove that S has a subset of 220 points such that the distance between every pair of them is at least $\sqrt{3}$.

21 Let $A B$ be a diameter of a circle; let t_{1} and t_{2} be the tangents at A and B, respectively; let C be any point other than A on t_{1}; and let $D_{1} D_{2} . E_{1} E_{2}$ be arcs on the circle determined by two lines through C. Prove that the lines $A D_{1}$ and $A D_{2}$ determine a segment on t_{2} equal in length to that of the segment on t_{2} determined by $A E_{1}$ and $A E_{2}$.

