AoPS Community

VMO 2017

www.artofproblemsolving.com/community/c393299 by v_Enhance, rterte, Strong_TTM, Navi_Makerloff

Day 14 problems

$1 \quad$ Given $a \in \mathbb{R}$ and a sequence $\left(u_{n}\right)$ defined by

$$
\left\{\begin{array}{l}
u_{1}=a \\
u_{n+1}=\frac{1}{2}+\sqrt{\frac{2 n+3}{n+1} u_{n}+\frac{1}{4}} \quad \forall n \in \mathbb{N}^{*}
\end{array}\right.
$$

a) Prove that $\left(u_{n}\right)$ is convergent sequence when $a=5$ and find the limit of the sequence in that case
b) Find all a such that the sequence $\left(u_{n}\right)$ is exist and is convergent.

2 Is there an integer coefficients polynomial $P(x)$ satisfying

$$
\left\{\begin{array}{l}
P(1+\sqrt[3]{2})=1+\sqrt[3]{2} \\
P(1+\sqrt{5})=2+3 \sqrt{5}
\end{array}\right.
$$

3 Given an acute, non isoceles triangle $A B C$ and (O) be its circumcircle, H its orthocenter and E, F are the feet of the altitudes from B and C, respectively. $A H$ intersects (O) at $D(D \neq A)$.
a) Let I be the midpoint of $A H, E I$ meets $B D$ at M and $F I$ meets $C D$ at N. Prove that $M N \perp$ OH.
b) The lines $D E, D F$ intersect (O) at P, Q respectively ($P \neq D, Q \neq D$). (AEF) meets (O) and $A O$ at R, S respectively ($R \neq A, S \neq A$). Prove that $B P, C Q, R S$ are concurrent.

4 Given an integer $n>1$ and a $n \times n$ grid $A B C D$ containing n^{2} unit squares, each unit square is colored by one of three colors: Black, white and gray. A coloring is called symmetry if each unit square has center on diagonal $A C$ is colored by gray and every couple of unit squares which are symmetry by $A C$ should be both colred by black or white. In each gray square, they label a number 0 , in a white square, they will label a positive integer and in a black square, a negative integer. A label will be called k-balance (with $k \in \mathbb{Z}^{+}$) if it satisfies the following requirements:
i) Each pair of unit squares which are symmetry by $A C$ are labelled with the same integer from the closed interval $[-k, k]$
ii) If a row and a column intersectes at a square that is colored by black, then the set of positive integers on that row and the set of positive integers on that column are distinct. If a row and
a column intersectes at a square that is colored by white, then the set of negative integers on that row and the set of negative integers on that column are distinct.
a) For $n=5$, find the minimum value of k such that there is a k-balance label for the following grid

b) Let $n=2017$. Find the least value of k such that there is always a k-balance label for a symmetry coloring.

Day 23 problems

1 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying relation :

$$
f(x f(y)-f(x))=2 f(x)+x y
$$

$\forall x, y \in \mathbb{R}$
2 Prove that
a) $\sum_{k=1}^{1008} k C_{2017}^{k} \equiv 0\left(\bmod 2017^{2}\right)$
b) $\sum_{k=1}^{504}(-1)^{k} C_{2017}^{k} \equiv 3\left(2^{2016}-1\right)\left(\bmod 2017^{2}\right)$

3 Given an acute triangle $A B C$ and (O) be its circumcircle. Let G be the point on arc $B C$ that doesn't contain O of the circumcircle (I) of triangle $O B C$. The circumcircle of $A B G$ intersects $A C$ at E and circumcircle of $A C G$ intersects $A B$ at $F(E \neq A, F \neq A)$.
a) Let K be the intersection of $B E$ and $C F$. Prove that $A K, B C, O G$ are concurrent.
b) Let D be a point on $\operatorname{arc} B O C(\operatorname{arc} B C$ containing $O)$ of $(I) . G B$ meets $C D$ at $M, G C$ meets $B D$ at N. Assume that $M N$ intersects (O) at P nad Q. Prove that when G moves on the arc $B C$ that doesn't contain O of (I), the circumcircle $(G P Q)$ always passes through two fixed points.

