AoPS Community

IMO Shortlist 1982

www.artofproblemsolving.com/community/c3933
by orl, Amir Hossein, grobber

1 The function $f(n)$ is defined on the positive integers and takes non-negative integer values. $f(2)=0, f(3)>0, f(9999)=3333$ and for all m, n :

$$
f(m+n)-f(m)-f(n)=0 \text { or } 1 .
$$

Determine $f(1982)$.
2 Let K be a convex polygon in the plane and suppose that K is positioned in the coordinate system in such a way that

$$
\text { area }\left(K \cap Q_{i}\right)=\frac{1}{4} \text { area } K(i=1,2,3,4,),
$$

where the Q_{i} denote the quadrants of the plane. Prove that if K contains no nonzero lattice point, then the area of K is less than 4 .

3 Consider infinite sequences $\left\{x_{n}\right\}$ of positive reals such that $x_{0}=1$ and $x_{0} \geq x_{1} \geq x_{2} \geq \ldots$.
a) Prove that for every such sequence there is an $n \geq 1$ such that:

$$
\frac{x_{0}^{2}}{x_{1}}+\frac{x_{1}^{2}}{x_{2}}+\ldots+\frac{x_{n-1}^{2}}{x_{n}} \geq 3.999 .
$$

b) Find such a sequence such that for all n :

$$
\frac{x_{0}^{2}}{x_{1}}+\frac{x_{1}^{2}}{x_{2}}+\ldots+\frac{x_{n-1}^{2}}{x_{n}}<4
$$

4 Determine all real values of the parameter a for which the equation

$$
16 x^{4}-a x^{3}+(2 a+17) x^{2}-a x+16=0
$$

has exactly four distinct real roots that form a geometric progression.
$5 \quad$ The diagonals $A C$ and $C E$ of the regular hexagon $A B C D E F$ are divided by inner points M and N respectively, so that

$$
\frac{A M}{A C}=\frac{C N}{C E}=r
$$

Determine r if B, M and N are collinear.

6 Let S be a square with sides length 100 . Let L be a path within S which does not meet itself and which is composed of line segments $A_{0} A_{1}, A_{1} A_{2}, A_{2} A_{3}, \ldots, A_{n-1} A_{n}$ with $A_{0}=A_{n}$. Suppose that for every point P on the boundary of S there is a point of L at a distance from P no greater than $\frac{1}{2}$. Prove that there are two points X and Y of L such that the distance between X and Y is not greater than 1 and the length of the part of L which lies between X and Y is not smaller than 198.

7 Let $p(x)$ be a cubic polynomial with integer coefficients with leading coefficient 1 and with one of its roots equal to the product of the other two. Show that $2 p(-1)$ is a multiple of $p(1)+$ $p(-1)-2(1+p(0))$.

8 A convex, closed figure lies inside a given circle. The figure is seen from every point of the circumference at a right angle (that is, the two rays drawn from the point and supporting the convex figure are perpendicular). Prove that the center of the circle is a center of symmetry of the figure.

9 Let $A B C$ be a triangle, and let P be a point inside it such that $\angle P A C=\angle P B C$. The perpendiculars from P to $B C$ and $C A$ meet these lines at L and M, respectively, and D is the midpoint of $A B$. Prove that $D L=D M$.

10 A box contains p white balls and q black balls. Beside the box there is a pile of black balls. Two balls are taken out of the box. If they have the same color, a black ball from the pile is put into the box. If they have different colors, the white ball is put back into the box. This procedure is repeated until the last two balls are removed from the box and one last ball is put in. What is the probability that this last ball is white?

11 (a) Find the rearrangement $\left\{a_{1}, \ldots, a_{n}\right\}$ of $\{1,2, \ldots, n\}$ that maximizes

$$
a_{1} a_{2}+a_{2} a_{3}+\cdots+a_{n} a_{1}=Q
$$

(b) Find the rearrangement that minimizes Q.

12 Four distinct circles $C, C_{1}, C_{2}, \mathrm{C} 3$ and a line L are given in the plane such that C and L are disjoint and each of the circles C_{1}, C_{2}, C_{3} touches the other two, as well as C and L. Assuming the radius of C to be 1 , determine the distance between its center and L.

13 A non-isosceles triangle $A_{1} A_{2} A_{3}$ has sides a_{1}, a_{2}, a_{3} with the side a_{i} lying opposite to the vertex A_{i}. Let M_{i} be the midpoint of the side a_{i}, and let T_{i} be the point where the inscribed circle of triangle $A_{1} A_{2} A_{3}$ touches the side a_{i}. Denote by S_{i} the reflection of the point T_{i} in the interior angle bisector of the angle A_{i}. Prove that the lines $M_{1} S_{1}, M_{2} S_{2}$ and $M_{3} S_{3}$ are concurrent.

14 Let $A B C D$ be a convex plane quadrilateral and let A_{1} denote the circumcenter of $\triangle B C D$. Define B_{1}, C_{1}, D_{1} in a corresponding way.
(a) Prove that either all of $A_{1}, B_{1}, C_{1}, D_{1}$ coincide in one point, or they are all distinct. Assuming the latter case, show that $A_{1}, \mathrm{C} 1$ are on opposite sides of the line $B_{1} D_{1}$, and similarly, B_{1}, D_{1} are on opposite sides of the line $A_{1} C_{1}$. (This establishes the convexity of the quadrilateral $A_{1} B_{1} C_{1} D_{1}$.)
(b) Denote by A_{2} the circumcenter of $B_{1} C_{1} D_{1}$, and define B_{2}, C_{2}, D_{2} in an analogous way. Show that the quadrilateral $A_{2} B_{2} C_{2} D_{2}$ is similar to the quadrilateral $A B C D$.

15 Show that

$$
\frac{1-s^{a}}{1-s} \leq(1+s)^{a-1}
$$

holds for every $1 \neq s>0$ real and $0<a \leq 1$ rational.
16 Prove that if n is a positive integer such that the equation

$$
x^{3}-3 x y^{2}+y^{3}=n
$$

has a solution in integers x, y, then it has at least three such solutions. Show that the equation has no solutions in integers for $n=2891$.

17 The right triangles $A B C$ and $A B_{1} C_{1}$ are similar and have opposite orientation. The right angles are at C and C_{1}, and we also have $\angle C A B=\angle C_{1} A B_{1}$. Let M be the point of intersection of the lines $B C_{1}$ and $B_{1} C$. Prove that if the lines $A M$ and $C C_{1}$ exist, they are perpendicular.

18 Let O be a point of three-dimensional space and let l_{1}, l_{2}, l_{3} be mutually perpendicular straight lines passing through O. Let S denote the sphere with center O and radius R, and for every point M of S, let S_{M} denote the sphere with center M and radius R. We denote by P_{1}, P_{2}, P_{3} the intersection of S_{M} with the straight lines l_{1}, l_{2}, l_{3}, respectively, where we put $P_{i} \neq O$ if l_{i} meets S_{M} at two distinct points and $P_{i}=O$ otherwise ($i=1,2,3$). What is the set of centers of gravity of the (possibly degenerate) triangles $P_{1} P_{2} P_{3}$ as M runs through the points of S ?

19 Let M be the set of real numbers of the form $\frac{m+n}{\sqrt{m^{2}+n^{2}}}$, where m and n are positive integers. Prove that for every pair $x \in M, y \in M$ with $x<y$, there exists an element $z \in M$ such that $x<z<y$.

20 Let $A B C D$ be a convex quadrilateral and draw regular triangles $A B M, C D P, B C N, A D Q$, the first two outward and the other two inward. Prove that $M N=A C$. What can be said about the quadrilateral $M N P Q$?

