AoPS Community

India National Olympiad 2017

www.artofproblemsolving.com/community/c393313
by PSY-Math, BartSimpsons

1 In the given figure, $A B C D$ is a square sheet of paper. It is folded along $E F$ such that A goes to a point A^{\prime} different from B and C, on the side $B C$ and D goes to D^{\prime}. The line $A^{\prime} D^{\prime}$ cuts $C D$ in G. Show that the inradius of the triangle $G C A^{\prime}$ is the sum of the inradii of the triangles $G D^{\prime} F$ and $A^{\prime} B E$.

2 Suppose $n \geq 0$ is an integer and all the roots of $x^{3}+\alpha x+4-\left(2 \times 2016^{n}\right)=0$ are integers. Find all possible values of α.

3 Find the number of triples (x, a, b) where x is a real number and a, b belong to the set $\{1,2,3,4,5,6,7,8,9\}$ such that

$$
x^{2}-a\{x\}+b=0 .
$$

where $\{x\}$ denotes the fractional part of the real number x.
4 Let $A B C D E$ be a convex pentagon in which $\angle A=\angle B=\angle C=\angle D=120^{\circ}$ and the side lengths are five consecutive integers in some order. Find all possible values of $A B+B C+C D$.

5 Let $A B C$ be a triangle with $\angle A=90^{\circ}$ and $A B<A C$. Let $A D$ be the altitude from A on to $B C$, Let P, Q and I denote respectively the incentres of triangle $A B D, A C D$ and $A B C$. Prove that $A I$ is perpendicular to $P Q$ and $A I=P Q$.

6 Let $n \geq 1$ be an integer and consider the sum

$$
x=\sum_{k \geq 0}\binom{n}{2 k} 2^{n-2 k} 3^{k}=\binom{n}{0} 2^{n}+\binom{n}{2} 2^{n-2} \cdot 3+\binom{n}{4} 2^{n-k} \cdot 3^{2}+\cdots .
$$

Show that $2 x-1,2 x, 2 x+1$ form the sides of a triangle whose area and inradius are also integers.

