Art of Problem Solving

AoPS Community

IMO Shortlist 1983

www.artofproblemsolving.com/community/c3934
by Amir Hossein, orl, ashwath.rabindranath

1 The localities $P_{1}, P_{2}, \ldots, P_{1983}$ are served by ten international airlines $A_{1}, A_{2}, \ldots, A_{10}$. It is noticed that there is direct service (without stops) between any two of these localities and that all airline schedules offer round-trip flights. Prove that at least one of the airlines can offer a round trip with an odd number of landings.

2 Let n be a positive integer. Let $\sigma(n)$ be the sum of the natural divisors d of n (including 1 and n). We say that an integer $m \geq 1$ is superabundant (P.Erdos, 1944) if $\forall k \in\{1,2, \ldots, m-1\}$, $\frac{\sigma(m)}{m}>\frac{\sigma(k)}{k}$.
Prove that there exists an infinity of superabundant numbers.
3 Let $A B C$ be an equilateral triangle and \mathcal{E} the set of all points contained in the three segments $A B, B C$, and $C A$ (including A, B, and C). Determine whether, for every partition of \mathcal{E} into two disjoint subsets, at least one of the two subsets contains the vertices of a right-angled triangle.

4 On the sides of the triangle $A B C$, three similar isosceles triangles $A B P(A P=P B), A Q C(A Q=$ $Q C)$, and $B R C(B R=R C)$ are constructed. The first two are constructed externally to the triangle $A B C$, but the third is placed in the same half-plane determined by the line $B C$ as the triangle $A B C$. Prove that $A P R Q$ is a parallelogram.

5 Consider the set of all strictly decreasing sequences of n natural numbers having the property that in each sequence no term divides any other term of the sequence. Let $A=\left(a_{j}\right)$ and $B=\left(b_{j}\right)$ be any two such sequences. We say that A precedes B if for some $k, a_{k}<b_{k}$ and $a_{i}=b_{i}$ for $i<k$. Find the terms of the first sequence of the set under this ordering.

6 Suppose that $x_{1}, x_{2}, \ldots, x_{n}$ are positive integers for which $x_{1}+x_{2}+\cdots+x_{n}=2(n+1)$. Show that there exists an integer r with $0 \leq r \leq n-1$ for which the following $n-1$ inequalities hold:

$$
\begin{gathered}
x_{r+1}+\cdots+x_{r+i} \leq 2 i+1, \quad \forall i, 1 \leq i \leq n-r ; \\
x_{r+1}+\cdots+x_{n}+x_{1}+\cdots+x_{i} \leq 2(n-r+i)+1, \quad \forall i, 1 \leq i \leq r-1 .
\end{gathered}
$$

Prove that if all the inequalities are strict, then r is unique and that otherwise there are exactly two such r.

7 Let a be a positive integer and let $\left\{a_{n}\right\}$ be defined by $a_{0}=0$ and

$$
a_{n+1}=\left(a_{n}+1\right) a+(a+1) a_{n}+2 \sqrt{a(a+1) a_{n}\left(a_{n}+1\right)} \quad(n=1,2, \ldots) .
$$

Show that for each positive integer n, a_{n} is a positive integer.
8 In a test, $3 n$ students participate, who are located in three rows of n students in each. The students leave the test room one by one. If $N_{1}(t), N_{2}(t), N_{3}(t)$ denote the numbers of students in the first, second, and third row respectively at time t, find the probability that for each t during the test,

$$
\left|N_{i}(t)-N_{j}(t)\right|<2, i \neq j, i, j=1,2, \ldots
$$

9 Let a, b and c be the lengths of the sides of a triangle. Prove that

$$
a^{2} b(a-b)+b^{2} c(b-c)+c^{2} a(c-a) \geq 0
$$

Determine when equality occurs.
10 Let p and q be integers. Show that there exists an interval I of length $1 / q$ and a polynomial P with integral coefficients such that

$$
\left|P(x)-\frac{p}{q}\right|<\frac{1}{q^{2}}
$$

for all $x \in I$.
11 Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous and satisfy:

$$
\begin{cases}b f(2 x)=f(x), & \text { if } 0 \leq x \leq 1 / 2 \\ f(x)=b+(1-b) f(2 x-1), & \text { if } 1 / 2 \leq x \leq 1\end{cases}
$$

where $b=\frac{1+c}{2+c}, c>0$. Show that $0<f(x)-x<c$ for every $x, 0<x<1$.
12 Find all functions f defined on the set of positive reals which take positive real values and satisfy: $f(x f(y))=y f(x)$ for all x, y; and $f(x) \rightarrow 0$ as $x \rightarrow \infty$.

13 Let E be the set of 1983^{3} points of the space \mathbb{R}^{3} all three of whose coordinates are integers between 0 and 1982 (including 0 and 1982). A coloring of E is a map from E to the set red, blue. How many colorings of E are there satisfying the following property: The number of red vertices among the 8 vertices of any right-angled parallelepiped is a multiple of 4 ?

14 Is it possible to choose 1983 distinct positive integers, all less than or equal to 10^{5}, no three of which are consecutive terms of an arithmetic progression?

15 Decide whether there exists a set M of positive integers satisfying the following conditions:
(i) For any natural number $m>1$ there exist $a, b \in M$ such that $a+b=m$.
(ii) If $a, b, c, d \in M, a, b, c, d>10$ and $a+b=c+d$, then $a=c$ or $a=d$.

16 Let $F(n)$ be the set of polynomials $P(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$, with $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$ and $0 \leq a_{0}=a_{n} \leq a_{1}=a_{n-1} \leq \cdots \leq a_{[n / 2]}=a_{[(n+1) / 2]}$. Prove that if $f \in F(m)$ and $g \in F(n)$, then $f g \in F(m+n)$.

17 Let $P_{1}, P_{2}, \ldots, P_{n}$ be distinct points of the plane, $n \geq 2$. Prove that

$$
\max _{1 \leq i<j \leq n} P_{i} P_{j}>\frac{\sqrt{3}}{2}(\sqrt{n}-1) \min _{1 \leq i<j \leq n} P_{i} P_{j}
$$

18 Let a, b and c be positive integers, no two of which have a common divisor greater than 1. Show that $2 a b c-a b-b c-c a$ is the largest integer which cannot be expressed in the form $x b c+y c a+z a b$, where x, y, z are non-negative integers.

19 Let $\left(F_{n}\right)_{n \geq 1}$ be the Fibonacci sequence $F_{1}=F_{2}=1, F_{n+2}=F_{n+1}+F_{n}(n \geq 1)$, and $P(x)$ the polynomial of degree 990 satisfying

$$
P(k)=F_{k}, \quad \text { for } k=992, \ldots, 1982 .
$$

Prove that $P(1983)=F_{1983}-1$.
20 Find all solutions of the following system of n equations in n variables:

$$
x_{1}\left|x_{1}\right|-\left(x_{1}-a\right)\left|x_{1}-a\right|=x_{2}\left|x_{2}\right|, x_{2}\left|x_{2}\right|-\left(x_{2}-a\right)\left|x_{2}-a\right|=x_{3}\left|x_{3}\right|, \vdots x_{n}\left|x_{n}\right|-\left(x_{n}-a\right)\left|x_{n}-a\right|=x_{1}\left|x_{1}\right|
$$

where a is a given number.
21 Find the greatest integer less than or equal to $\sum_{k=1}^{2^{1983}} k^{\frac{1}{1983}}-1$.
22 Let n be a positive integer having at least two different prime factors. Show that there exists a permutation $a_{1}, a_{2}, \ldots, a_{n}$ of the integers $1,2, \ldots, n$ such that

$$
\sum_{k=1}^{n} k \cdot \cos \frac{2 \pi a_{k}}{n}=0
$$

23 Let A be one of the two distinct points of intersection of two unequal coplanar circles C_{1} and C_{2} with centers O_{1} and O_{2} respectively. One of the common tangents to the circles touches C_{1} at P_{1} and C_{2} at P_{2}, while the other touches C_{1} at Q_{1} and C_{2} at Q_{2}. Let M_{1} be the midpoint of $P_{1} Q_{1}$ and M_{2} the midpoint of $P_{2} Q_{2}$. Prove that $\angle O_{1} A O_{2}=\angle M_{1} A M_{2}$.

24 Let d_{n} be the last nonzero digit of the decimal representation of n !. Prove that d_{n} is aperiodic; that is, there do not exist T and n_{0} such that for all $n \geq n_{0}, d_{n+T}=d_{n}$.

25 Prove that every partition of 3-dimensional space into three disjoint subsets has the following property: One of these subsets contains all possible distances; i.e., for every $a \in \mathbb{R}^{+}$, there are points M and N inside that subset such that distance between M and N is exactly a.

