AoPS Community

IMO Shortlist 1984

www.artofproblemsolving.com/community/c3935
by Amir Hossein, orl, ehsan2004

1 Find all solutions of the following system of n equations in n variables:

$$
x_{1}\left|x_{1}\right|-\left(x_{1}-a\right)\left|x_{1}-a\right|=x_{2}\left|x_{2}\right|, x_{2}\left|x_{2}\right|-\left(x_{2}-a\right)\left|x_{2}-a\right|=x_{3}\left|x_{3}\right|, \vdots x_{n}\left|x_{n}\right|-\left(x_{n}-a\right)\left|x_{n}-a\right|=x_{1}\left|x_{1}\right|
$$

where a is a given number.
2 Prove:
(a) There are infinitely many triples of positive integers m, n, p such that $4 m n-m-n=p^{2}-1$.
(b) There are no positive integers m, n, p such that $4 m n-m-n=p^{2}$.

3 Find all positive integers n such that

$$
n=d_{6}^{2}+d_{7}^{2}-1,
$$

where $1=d_{1}<d_{2}<\cdots<d_{k}=n$ are all positive divisors of the number n.
4 Let d be the sum of the lengths of all the diagonals of a plane convex polygon with n vertices (where $n>3$). Let p be its perimeter. Prove that:

$$
n-3<\frac{2 d}{p}<\left[\frac{n}{2}\right] \cdot\left[\frac{n+1}{2}\right]-2
$$

where $[x]$ denotes the greatest integer not exceeding x.
5 Prove that $0 \leq y z+z x+x y-2 x y z \leq \frac{7}{27}$, where x, y and z are non-negative real numbers satisfying $x+y+z=1$.

6 Let c be a positive integer. The sequence $\left\{f_{n}\right\}$ is defined as follows:

$$
f_{1}=1, f_{2}=c, f_{n+1}=2 f_{n}-f_{n-1}+2 \quad(n \geq 2) .
$$

Show that for each $k \in \mathbb{N}$ there exists $r \in \mathbb{N}$ such that $f_{k} f_{k+1}=f_{r}$.
(a) Decide whether the fields of the 8×8 chessboard can be numbered by the numbers $1,2, \ldots, 64$ in such a way that the sum of the four numbers in each of its parts of one of the forms http://www.artofproblemsolving.com/Forum/download/file.php?id=28446 is divisible by four.
(b) Solve the analogous problem for
http://www.artofproblemsolving.com/Forum/download/file.php?id=28447
8 Given points O and A in the plane. Every point in the plane is colored with one of a finite number of colors. Given a point X in the plane, the circle $C(X)$ has center O and radius $O X+\frac{\angle A O X}{O X}$, where $\angle A O X$ is measured in radians in the range $[0,2 \pi)$. Prove that we can find a point X, not on $O A$, such that its color appears on the circumference of the circle $C(X)$.

9 Let a, b, c be positive numbers with $\sqrt{a}+\sqrt{b}+\sqrt{c}=\frac{\sqrt{3}}{2}$. Prove that the system of equations

$$
\begin{aligned}
& \sqrt{y-a}+\sqrt{z-a}=1, \\
& \sqrt{z-b}+\sqrt{x-b}=1 \\
& \sqrt{x-c}+\sqrt{y-c}=1
\end{aligned}
$$

has exactly one solution (x, y, z) in real numbers.
10 Prove that the product of five consecutive positive integers cannot be the square of an integer.

11 Let n be a positive integer and $a_{1}, a_{2}, \ldots, a_{2 n}$ mutually distinct integers. Find all integers x satisfying

$$
\left(x-a_{1}\right) \cdot\left(x-a_{2}\right) \cdots\left(x-a_{2 n}\right)=(-1)^{n}(n!)^{2} .
$$

12 Find one pair of positive integers a, b such that $a b(a+b)$ is not divisible by 7 , but $(a+b)^{7}-a^{7}-b^{7}$ is divisible by 7^{7}.

13 Prove that the volume of a tetrahedron inscribed in a right circular cylinder of volume 1 does not exceed $\frac{2}{3 \pi}$.

14 Let $A B C D$ be a convex quadrilateral with the line $C D$ being tangent to the circle on diameter $A B$. Prove that the line $A B$ is tangent to the circle on diameter $C D$ if and only if the lines $B C$ and $A D$ are parallel.

15 Angles of a given triangle $A B C$ are all smaller than 120°. Equilateral triangles $A F B, B D C$ and $C E A$ are constructed in the exterior of $A B C$.
(a) Prove that the lines $A D, B E$, and $C F$ pass through one point S.
(b) Prove that $S D+S E+S F=2(S A+S B+S C)$.

16 Let a, b, c, d be odd integers such that $0<a<b<c<d$ and $a d=b c$. Prove that if $a+d=2^{k}$ and $b+c=2^{m}$ for some integers k and m, then $a=1$.

17 In a permutation $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of the set $1,2, \ldots, n$ we call a pair $\left(x_{i}, x_{j}\right)$ discordant if $i<j$ and $x_{i}>x_{j}$. Let $d(n, k)$ be the number of such permutations with exactly k discordant pairs. Find $d(n, 2)$ and $d(n, 3)$.

18 Inside triangle $A B C$ there are three circles k_{1}, k_{2}, k_{3} each of which is tangent to two sides of the triangle and to its incircle k. The radii of k_{1}, k_{2}, k_{3} are 1,4 , and 9 . Determine the radius of k.

19 The harmonic table is a triangular array.
$\begin{array}{llll}1 & & & \\ \frac{1}{2} & \frac{1}{2} & & \\ \frac{1}{3} & \frac{1}{6} & \frac{1}{3} & \\ \frac{1}{4} & \frac{1}{12} & \frac{1}{12} & \frac{1}{4}\end{array}$
Where $a_{n, 1}=\frac{1}{n}$ and $a_{n, k+1}=a_{n-1, k}-a_{n, k}$ for $1 \leq k \leq n-1$. Find the harmonic mean of the $1985^{\text {th }}$ row.

20 Determine all pairs (a, b) of positive real numbers with $a \neq 1$ such that

$$
\log _{a} b<\log _{a+1}(b+1) .
$$

