1986 IMO Shortlist

AoPS Community

IMO Shortlist 1986

www.artofproblemsolving.com/community/c3937 by orl, Amir Hossein

- 1 Let A, B be adjacent vertices of a regular n-gon ($n \ge 5$) with center O. A triangle XYZ, which is congruent to and initially coincides with OAB, moves in the plane in such a way that Y and Z each trace out the whole boundary of the polygon, with X remaining inside the polygon. Find the locus of X.
- **2** Let $f(x) = x^n$ where *n* is a fixed positive integer and $x = 1, 2, \cdots$. Is the decimal expansion a = 0.f(1)f(2)f(3)... rational for any value of *n* ?

The decimal expansion of a is defined as follows: If $f(x) = d_1(x)d_2(x)\cdots d_{r(x)}(x)$ is the decimal expansion of f(x), then $a = 0.1d_1(2)d_2(2)\cdots d_{r(2)}(2)d_1(3)\dots d_{r(3)}(3)d_1(4)\cdots$.

- **3** Let *A*, *B*, and *C* be three points on the edge of a circular chord such that *B* is due west of *C* and *ABC* is an equilateral triangle whose side is 86 meters long. A boy swam from *A* directly toward *B*. After covering a distance of *x* meters, he turned and swam westward, reaching the shore after covering a distance of *y* meters. If *x* and *y* are both positive integers, determine *y*.
- **4** Provided the equation $xyz = p^n(x + y + z)$ where $p \ge 3$ is a prime and $n \in \mathbb{N}$. Prove that the equation has at least 3n + 3 different solutions (x, y, z) with natural numbers x, y, z and x < y < z. Prove the same for p > 3 being an odd integer.
- **5** Let *d* be any positive integer not equal to 2, 5 or 13. Show that one can find distinct *a*, *b* in the set $\{2, 5, 13, d\}$ such that ab 1 is not a perfect square.
- **6** Find four positive integers each not exceeding 70000 and each having more than 100 divisors.
- 7 Let real numbers x_1, x_2, \dots, x_n satisfy $0 < x_1 < x_2 < \dots < x_n < 1$ and set $x_0 = 0, x_{n+1} = 1$. Suppose that these numbers satisfy the following system of equations:

$$\sum_{i=0, j \neq i}^{n+1} \frac{1}{x_i - x_j} = 0 \quad \text{where } i = 1, 2, ..., n.$$

Prove that $x_{n+1-i} = 1 - x_i$ for i = 1, 2, ..., n.

8 From a collection of n persons q distinct two-member teams are selected and ranked $1, \dots, q$ (no ties). Let m be the least integer larger than or equal to 2q/n. Show that there are m distinct teams that may be listed so that :

(i) each pair of consecutive teams on the list have one member in common and (ii) the chain of teams on the list are in rank order.

AoPS Community

Alternative formulation.

Given a graph with n vertices and q edges numbered $1, \dots, q$, show that there exists a chain of m edges, $m \ge \frac{2q}{n}$, each two consecutive edges having a common vertex, arranged monotonically with respect to the numbering.

- **9** Given a finite set of points in the plane, each with integer coordinates, is it always possible to color the points red or white so that for any straight line *L* parallel to one of the coordinate axes the difference (in absolute value) between the numbers of white and red points on *L* is not greater than 1?
- **10** Three persons *A*, *B*, *C*, are playing the following game:

A *k*-element subset of the set $\{1, ..., 1986\}$ is randomly chosen, with an equal probability of each choice, where *k* is a fixed positive integer less than or equal to 1986. The winner is *A*, *B* or *C*, respectively, if the sum of the chosen numbers leaves a remainder of 0, 1, or 2 when divided by 3.

For what values of k is this game a fair one? (A game is fair if the three outcomes are equally probable.)

11 Let f(n) be the least number of distinct points in the plane such that for each $k = 1, 2, \dots, n$ there exists a straight line containing exactly k of these points. Find an explicit expression for f(n).

Simplified version.

Show that $f(n) = \left\lceil \frac{n+1}{2} \right\rceil \left\lceil \frac{n+2}{2} \right\rceil$. Where [x] denoting the greatest integer not exceeding x.

- **12** To each vertex of a regular pentagon an integer is assigned, so that the sum of all five numbers is positive. If three consecutive vertices are assigned the numbers x, y, z respectively, and y < 0, then the following operation is allowed: x, y, z are replaced by x + y, -y, z + y respectively. Such an operation is performed repeatedly as long as at least one of the five numbers is negative. Determine whether this procedure necessarily comes to an end after a finite number of steps.
- **13** A particle moves from (0,0) to (n,n) directed by a fair coin. For each head it moves one step east and for each tail it moves one step north. At (n, y), y < n, it stays there if a head comes up and at (x, n), x < n, it stays there if a tail comes up. Let *k* be a fixed positive integer. Find the probability that the particle needs exactly 2n + k tosses to reach (n, n).
- 14 The circle inscribed in a triangle ABC touches the sides BC, CA, AB in D, E, F, respectively, and X, Y, Z are the midpoints of EF, FD, DE, respectively. Prove that the centers of the inscribed circle and of the circles around XYZ and ABC are collinear.

AoPS Community

- **15** Let ABCD be a convex quadrilateral whose vertices do not lie on a circle. Let A'B'C'D' be a quadrangle such that A', B', C', D' are the centers of the circumcircles of triangles BCD, ACD, ABD, and ABC. We write T(ABCD) = A'B'C'D'. Let us define A''B''C''D'' = T(A'B'C'D') = T(T(ABCD)).
 - (a) Prove that ABCD and A''B''C''D'' are similar.
 - (b) The ratio of similitude depends on the size of the angles of *ABCD*. Determine this ratio.
- **16** Let A, B be adjacent vertices of a regular n-gon ($n \ge 5$) with center O. A triangle XYZ, which is congruent to and initially coincides with OAB, moves in the plane in such a way that Y and Z each trace out the whole boundary of the polygon, with X remaining inside the polygon. Find the locus of X.
- **17** Given a point P_0 in the plane of the triangle $A_1A_2A_3$. Define $A_s = A_{s-3}$ for all $s \ge 4$. Construct a set of points P_1, P_2, P_3, \ldots such that P_{k+1} is the image of P_k under a rotation center A_{k+1} through an angle 120° clockwise for $k = 0, 1, 2, \ldots$ Prove that if $P_{1986} = P_0$, then the triangle $A_1A_2A_3$ is equilateral.
- **18** Let *AX*, *BY*, *CZ* be three cevians concurrent at an interior point *D* of a triangle *ABC*. Prove that if two of the quadrangles *DYAZ*, *DZBX*, *DXCY* are circumscribable, so is the third.
- **19** A tetrahedron ABCD is given such that AD = BC = a; AC = BD = b; $AB \cdot CD = c^2$. Let f(P) = AP + BP + CP + DP, where P is an arbitrary point in space. Compute the least value of f(P).
- **20** Prove that the sum of the face angles at each vertex of a tetrahedron is a straight angle if and only if the faces are congruent triangles.
- 21 Let *ABCD* be a tetrahedron having each sum of opposite sides equal to 1. Prove that

$$r_A + r_B + r_C + r_D \le \frac{\sqrt{3}}{3}$$

where r_A, r_B, r_C, r_D are the inradii of the faces, equality holding only if *ABCD* is regular.

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱