Art of Problem Solving

AoPS Community

IMO Shortlist 1986

www.artofproblemsolving.com/community/c3937
by orl, Amir Hossein

1 Let A, B be adjacent vertices of a regular n-gon $(n \geq 5)$ with center O. A triangle $X Y Z$, which is congruent to and initially coincides with $O A B$, moves in the plane in such a way that Y and Z each trace out the whole boundary of the polygon, with X remaining inside the polygon. Find the locus of X.

2 Let $f(x)=x^{n}$ where n is a fixed positive integer and $x=1,2, \cdots$. Is the decimal expansion $a=0 . f(1) f(2) f(3) \ldots$ rational for any value of n ?
The decimal expansion of \mathbf{a} is defined as follows: If $f(x)=d_{1}(x) d_{2}(x) \cdots d_{r(x)}(x)$ is the decimal expansion of $f(x)$, then $a=0.1 d_{1}(2) d_{2}(2) \cdots d_{r(2)}(2) d_{1}(3) \ldots d_{r(3)}(3) d_{1}(4) \cdots$.

3 Let A, B, and C be three points on the edge of a circular chord such that B is due west of C and $A B C$ is an equilateral triangle whose side is 86 meters long. A boy swam from A directly toward B. After covering a distance of x meters, he turned and swam westward, reaching the shore after covering a distance of y meters. If x and y are both positive integers, determine y.

4 Provided the equation $x y z=p^{n}(x+y+z)$ where $p \geq 3$ is a prime and $n \in \mathbb{N}$. Prove that the equation has at least $3 n+3$ different solutions (x, y, z) with natural numbers x, y, z and $x<y<z$. Prove the same for $p>3$ being an odd integer.

5 Let d be any positive integer not equal to 2,5 or 13 . Show that one can find distinct a, b in the set $\{2,5,13, d\}$ such that $a b-1$ is not a perfect square.

6 Find four positive integers each not exceeding 70000 and each having more than 100 divisors.
7 Let real numbers $x_{1}, x_{2}, \cdots, x_{n}$ satisfy $0<x_{1}<x_{2}<\cdots<x_{n}<1$ and set $x_{0}=0, x_{n+1}=1$. Suppose that these numbers satisfy the following system of equations:

$$
\sum_{j=0, j \neq i}^{n+1} \frac{1}{x_{i}-x_{j}}=0 \quad \text { where } i=1,2, \ldots, n
$$

Prove that $x_{n+1-i}=1-x_{i}$ for $i=1,2, \ldots, n$.
8 From a collection of n persons q distinct two-member teams are selected and ranked $1, \cdots, q$ (no ties). Let m be the least integer larger than or equal to $2 q / n$. Show that there are m distinct teams that may be listed so that :
(i) each pair of consecutive teams on the list have one member in common and
(ii) the chain of teams on the list are in rank order.

Alternative formulation.

Given a graph with n vertices and q edges numbered $1, \cdots, q$, show that there exists a chain of m edges, $m \geq \frac{2 q}{n}$, each two consecutive edges having a common vertex, arranged monotonically with respect to the numbering.

9 Given a finite set of points in the plane, each with integer coordinates, is it always possible to color the points red or white so that for any straight line L parallel to one of the coordinate axes the difference (in absolute value) between the numbers of white and red points on L is not greater than 1 ?

10 Three persons A, B, C, are playing the following game:
A k-element subset of the set $\{1, \ldots, 1986\}$ is randomly chosen, with an equal probability of each choice, where k is a fixed positive integer less than or equal to 1986 . The winner is A, B or C, respectively, if the sum of the chosen numbers leaves a remainder of 0,1 , or 2 when divided by 3 .

For what values of k is this game a fair one? (A game is fair if the three outcomes are equally probable.)

11 Let $f(n)$ be the least number of distinct points in the plane such that for each $k=1,2, \cdots, n$ there exists a straight line containing exactly k of these points. Find an explicit expression for $f(n)$.

Simplified version.

Show that $f(n)=\left[\frac{n+1}{2}\right]\left[\frac{n+2}{2}\right]$. Where $[x]$ denoting the greatest integer not exceeding x.
12 To each vertex of a regular pentagon an integer is assigned, so that the sum of all five numbers is positive. If three consecutive vertices are assigned the numbers x, y, z respectively, and $y<0$, then the following operation is allowed: x, y, z are replaced by $x+y,-y, z+y$ respectively. Such an operation is performed repeatedly as long as at least one of the five numbers is negative. Determine whether this procedure necessarily comes to an end after a finite number of steps.

13 A particle moves from $(0,0)$ to (n, n) directed by a fair coin. For each head it moves one step east and for each tail it moves one step north. At $(n, y), y<n$, it stays there if a head comes up and at $(x, n), x<n$, it stays there if a tail comes up. Let k be a fixed positive integer. Find the probability that the particle needs exactly $2 n+k$ tosses to reach (n, n).

14 The circle inscribed in a triangle $A B C$ touches the sides $B C, C A, A B$ in D, E, F, respectively, and X, Y, Z are the midpoints of $E F, F D, D E$, respectively. Prove that the centers of the inscribed circle and of the circles around $X Y Z$ and $A B C$ are collinear.

AoPS Community

1986 IMO Shortlist

15 Let $A B C D$ be a convex quadrilateral whose vertices do not lie on a circle. Let $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ be a quadrangle such that $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ are the centers of the circumcircles of triangles $B C D, A C D, A B D$, and $A B C$. We write $T(A B C D)=A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Let us define $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}=T\left(A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right)=$ $T(T(A B C D))$.
(a) Prove that $A B C D$ and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ are similar.
(b) The ratio of similitude depends on the size of the angles of $A B C D$. Determine this ratio.

16 Let A, B be adjacent vertices of a regular n-gon $(n \geq 5)$ with center O. A triangle $X Y Z$, which is congruent to and initially coincides with $O A B$, moves in the plane in such a way that Y and Z each trace out the whole boundary of the polygon, with X remaining inside the polygon. Find the locus of X.

17 Given a point P_{0} in the plane of the triangle $A_{1} A_{2} A_{3}$. Define $A_{s}=A_{s-3}$ for all $s \geq 4$. Construct a set of points $P_{1}, P_{2}, P_{3}, \ldots$ such that P_{k+1} is the image of P_{k} under a rotation center A_{k+1} through an angle 120° clockwise for $k=0,1,2, \ldots$. Prove that if $P_{1986}=P_{0}$, then the triangle $A_{1} A_{2} A_{3}$ is equilateral.

18 Let $A X, B Y, C Z$ be three cevians concurrent at an interior point D of a triangle $A B C$. Prove that if two of the quadrangles $D Y A Z, D Z B X, D X C Y$ are circumscribable, so is the third.

19 A tetrahedron $A B C D$ is given such that $A D=B C=a ; A C=B D=b ; A B \cdot C D=c^{2}$. Let $f(P)=A P+B P+C P+D P$, where P is an arbitrary point in space. Compute the least value of $f(P)$.

20 Prove that the sum of the face angles at each vertex of a tetrahedron is a straight angle if and only if the faces are congruent triangles.

21 Let $A B C D$ be a tetrahedron having each sum of opposite sides equal to 1 . Prove that

$$
r_{A}+r_{B}+r_{C}+r_{D} \leq \frac{\sqrt{3}}{3}
$$

where $r_{A}, r_{B}, r_{C}, r_{D}$ are the inradii of the faces, equality holding only if $A B C D$ is regular.

