

IMO Shortlist 1995

www.artofproblemsolving.com/community/c3946

by orl, Valentin Vornicu, BaBaK Ghalebi, xtar, e.lopes, thaithuan_GC, mr.danh, grobber, nttu, Stun, ehsan2004, nntrkien, iura, shyong, Bajoukx

– Algebra

1 Let *a*, *b*, *c* be positive real numbers such that abc = 1. Prove that

$$\frac{1}{a^3 \left(b + c \right)} + \frac{1}{b^3 \left(c + a \right)} + \frac{1}{c^3 \left(a + b \right)} \geq \frac{3}{2}.$$

2 Let *a* and *b* be non-negative integers such that $ab \ge c^2$, where *c* is an integer. Prove that there is a number *n* and integers $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n$ such that

$$\sum_{i=1}^n x_i^2 = a, \sum_{i=1}^n y_i^2 = b, \text{ and } \sum_{i=1}^n x_i y_i = c.$$

3 Let *n* be an integer, $n \ge 3$. Let a_1, a_2, \ldots, a_n be real numbers such that $2 \le a_i \le 3$ for $i = 1, 2, \ldots, n$. If $s = a_1 + a_2 + \ldots + a_n$, prove that

$$\frac{a_1^2 + a_2^2 - a_3^2}{a_1 + a_2 - a_3} + \frac{a_2^2 + a_3^2 - a_4^2}{a_2 + a_3 - a_4} + \dots + \frac{a_n^2 + a_1^2 - a_2^2}{a_n + a_1 - a_2} \le 2s - 2n.$$

4 Find all of the positive real numbers like x, y, z, such that :

1.) x + y + z = a + b + c

2.)
$$4xyz = a^2x + b^2y + c^2z + abc$$

Proposed to Gazeta Matematica in the 80s by VASILE CRTOAJE and then by Titu Andreescu to IMO 1995.

- **5** Let \mathbb{R} be the set of real numbers. Does there exist a function $f : \mathbb{R} \to \mathbb{R}$ which simultaneously satisfies the following three conditions?
 - (a) There is a positive number M such that $\forall x : -M \leq f(x) \leq M$.
 - (b) The value of f(1) is 1.

(c) If $x \neq 0$, then

$$f\left(x+\frac{1}{x^2}\right) = f(x) + \left[f\left(\frac{1}{x}\right)\right]^2$$

6 Let n be an integer, $n \ge 3$. Let x_1, x_2, \ldots, x_n be real numbers such that $x_i < x_{i+1}$ for $1 \le i \le n-1$. Prove that

$$\frac{n(n-1)}{2}\sum_{i< j} x_i x_j > \left(\sum_{i=1}^{n-1} (n-i) \cdot x_i\right) \cdot \left(\sum_{j=2}^n (j-1) \cdot x_j\right)$$

- Geometry

- 1 Let A, B, C, D be four distinct points on a line, in that order. The circles with diameters AC and BD intersect at X and Y. The line XY meets BC at Z. Let P be a point on the line XY other than Z. The line CP intersects the circle with diameter AC at C and M, and the line BP intersects the circle with diameter BD at B and N. Prove that the lines AM, DN, XY are concurrent.
- **2** Let *A*, *B* and *C* be non-collinear points. Prove that there is a unique point *X* in the plane of *ABC* such that

$$XA^{2} + XB^{2} + AB^{2} = XB^{2} + XC^{2} + BC^{2} = XC^{2} + XA^{2} + CA^{2}.$$

- **3** The incircle of triangle $\triangle ABC$ touches the sides *BC*, *CA*, *AB* at *D*, *E*, *F* respectively. *X* is a point inside triangle of $\triangle ABC$ such that the incircle of triangle $\triangle XBC$ touches *BC* at *D*, and touches *CX* and *XB* at *Y* and *Z* respectively. Show that *E*, *F*, *Z*, *Y* are concyclic.
- **4** An acute triangle ABC is given. Points A_1 and A_2 are taken on the side BC (with A_2 between A_1 and C), B_1 and B_2 on the side AC (with B_2 between B_1 and A), and C_1 and C_2 on the side AB (with C_2 between C_1 and B) so that

$$\angle AA_1A_2 = \angle AA_2A_1 = \angle BB_1B_2 = \angle BB_2B_1 = \angle CC_1C_2 = \angle CC_2C_1.$$

The lines AA_1, BB_1 , and CC_1 bound a triangle, and the lines AA_2, BB_2 , and CC_2 bound a second triangle. Prove that all six vertices of these two triangles lie on a single circle.

- **5** Let ABCDEF be a convex hexagon with AB = BC = CD and DE = EF = FA, such that $\angle BCD = \angle EFA = \frac{\pi}{3}$. Suppose *G* and *H* are points in the interior of the hexagon such that $\angle AGB = \angle DHE = \frac{2\pi}{3}$. Prove that $AG + GB + GH + DH + HE \ge CF$.
- **6** Let $A_1A_2A_3A_4$ be a tetrahedron, *G* its centroid, and A'_1, A'_2, A'_3 , and A'_4 the points where the circumsphere of $A_1A_2A_3A_4$ intersects GA_1, GA_2, GA_3 , and GA_4 , respectively. Prove that

$$GA_1 \cdot GA_2 \cdot GA_3 \cdot GA_4 \leq GA_1' \cdot GA_2' \cdot GA_3' \cdot GA_4'$$

and

$$\frac{1}{GA_1'} + \frac{1}{GA_2'} + \frac{1}{GA_3'} + \frac{1}{GA_4'} \le \frac{1}{GA_1} + \frac{1}{GA_2} + \frac{1}{GA_3} + \frac{1}{GA_4}$$

- 7 Let ABCD be a convex quadrilateral and O a point inside it. Let the parallels to the lines BC, AB, DA, CD through the point O meet the sides AB, BC, CD, DA of the quadrilateral ABCD at the points E, F, G, H, respectively. Then, prove that $\sqrt{|AHOE|} + \sqrt{|CFOG|} \le \sqrt{|ABCD|}$, where $|P_1P_2...P_n|$ is an abbreviation for the non-directed area of an arbitrary polygon $P_1P_2...P_n$.
- 8 Suppose that ABCD is a cyclic quadrilateral. Let $E = AC \cap BD$ and $F = AB \cap CD$. Denote by H_1 and H_2 the orthocenters of triangles EAD and EBC, respectively. Prove that the points F, H_1 , H_2 are collinear.

Original formulation:

Let ABC be a triangle. A circle passing through B and C intersects the sides AB and AC again at C' and B', respectively. Prove that BB', CC' and HH' are concurrent, where H and H' are the orthocentres of triangles ABC and AB'C' respectively.

- NT, Combs
- 1 Let *k* be a positive integer. Show that there are infinitely many perfect squares of the form $n \cdot 2^k 7$ where *n* is a positive integer.
- **2** Let \mathbb{Z} denote the set of all integers. Prove that for any integers A and B, one can find an integer C for which $M_1 = \{x^2 + Ax + B : x \in \mathbb{Z}\}$ and $M_2 = 2x^2 + 2x + C : x \in \mathbb{Z}$ do not intersect.
- **3** Determine all integers n > 3 for which there exist n points A_1, \dots, A_n in the plane, no three collinear, and real numbers r_1, \dots, r_n such that for $1 \le i < j < k \le n$, the area of $\triangle A_i A_j A_k$ is $r_i + r_j + r_k$.

4 Find all x, y and z in positive integer. $z + y^2 + x^3 = xyz$ and x = gcd(y, z).

- 5 At a meeting of 12k people, each person exchanges greetings with exactly 3k + 6 others. For any two people, the number who exchange greetings with both is the same. How many people are at the meeting?
- **6** Let p be an odd prime number. How many p-element subsets A of $\{1, 2, ..., 2p\}$ are there, the sum of whose elements is divisible by p?
- 7 Does there exist an integer n > 1 which satisfies the following condition? The set of positive integers can be partitioned into n nonempty subsets, such that an arbitrary sum of n 1 integers, one taken from each of any n 1 of the subsets, lies in the remaining subset.
- 8 Let p be an odd prime. Determine positive integers x and y for which $x \le y$ and $\sqrt{2p} \sqrt{x} \sqrt{y}$ is non-negative and as small as possible.
- Sequences
- **1** Does there exist a sequence $F(1), F(2), F(3), \ldots$ of non-negative integers that simultaneously satisfies the following three conditions?
 - (a) Each of the integers $0, 1, 2, \ldots$ occurs in the sequence.
 - (b) Each positive integer occurs in the sequence infinitely often.

(c) For any $n \ge 2$,

$$F(F(n^{163})) = F(F(n)) + F(F(361)).$$

2 Find the maximum value of x_0 for which there exists a sequence $x_0, x_1 \cdots, x_{1995}$ of positive reals with $x_0 = x_{1995}$, such that

$$x_{i-1} + \frac{2}{x_{i-1}} = 2x_i + \frac{1}{x_i},$$

for all $i = 1, \dots, 1995$.

3 For an integer $x \ge 1$, let p(x) be the least prime that does not divide x, and define q(x) to be the product of all primes less than p(x). In particular, p(1) = 2. For x having p(x) = 2, define q(x) = 1. Consider the sequence x_0, x_1, x_2, \ldots defined by $x_0 = 1$ and

$$x_{n+1} = \frac{x_n p(x_n)}{q(x_n)}$$

for $n \ge 0$. Find all n such that $x_n = 1995$.

4 Suppose that x_1, x_2, x_3, \ldots are positive real numbers for which

$$x_n^n = \sum_{j=0}^{n-1} x_n^j$$

for $n = 1, 2, 3, \ldots$ Prove that $\forall n$,

$$2 - \frac{1}{2^{n-1}} \le x_n < 2 - \frac{1}{2^n}.$$

5 For positive integers n, the numbers f(n) are defined inductively as follows: f(1) = 1, and for every positive integer n, f(n + 1) is the greatest integer m such that there is an arithmetic progression of positive integers $a_1 < a_2 < \ldots < a_m = n$ for which

$$f(a_1) = f(a_2) = \ldots = f(a_m).$$

Prove that there are positive integers a and b such that f(an + b) = n + 2 for every positive integer n.

6 Let \mathbb{N} denote the set of all positive integers. Prove that there exists a unique function $f : \mathbb{N} \to \mathbb{N}$ satisfying

$$f(m + f(n)) = n + f(m + 95)$$

for all *m* and *n* in \mathbb{N} . What is the value of $\sum_{k=1}^{19} f(k)$?

AoPS Online AoPS Academy AoPS & Ao