IMO Shortlist 2000

www.artofproblemsolving.com/community/c3951
by Valentin Vornicu, orl, perfect_radio, grobber, grodij, Tiks, behzad, darij grinberg, Lopes, Pascual2005

- Algebra

1 Let a, b, c be positive real numbers so that $a b c=1$. Prove that

$$
\left(a-1+\frac{1}{b}\right)\left(b-1+\frac{1}{c}\right)\left(c-1+\frac{1}{a}\right) \leq 1 .
$$

2 Let a, b, c be positive integers satisfying the conditions $b>2 a$ and $c>2 b$. Show that there exists a real number λ with the property that all the three numbers $\lambda a, \lambda b, \lambda c$ have their fractional parts lying in the interval $\left(\frac{1}{3}, \frac{2}{3}\right]$.

3 Find all pairs of functions $f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+g(y))=x f(y)-y f(x)+g(x) \quad \text { for all } x, y \in \mathbb{R} .
$$

4 The function F is defined on the set of nonnegative integers and takes nonnegative integer values satisfying the following conditions: for every $n \geq 0$,
(i) $F(4 n)=F(2 n)+F(n)$,
(ii) $F(4 n+2)=F(4 n)+1$,
(iii) $F(2 n+1)=F(2 n)+1$.

Prove that for each positive integer m, the number of integers n with $0 \leq n<2^{m}$ and $F(4 n)=$ $F(3 n)$ is $F\left(2^{m+1}\right)$.

5 Let $n \geq 2$ be a positive integer and λ a positive real number. Initially there are n fleas on a horizontal line, not all at the same point. We define a move as choosing two fleas at some points A and B, with A to the left of B, and letting the flea from A jump over the flea from B to the point C so that $\frac{B C}{A B}=\lambda$.

Determine all values of λ such that, for any point M on the line and for any initial position of the n fleas, there exists a sequence of moves that will take them all to the position right of M.

6 A nonempty set A of real numbers is called a B_{3}-set if the conditions $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6} \in A$ and $a_{1}+a_{2}+a_{3}=a_{4}+a_{5}+a_{6}$ imply that the sequences (a_{1}, a_{2}, a_{3}) and (a_{4}, a_{5}, a_{6}) are identical up to a permutation. Let $A=\left\{a_{0}=0<a_{1}<a_{2}<\cdots\right\}$, $B=\left\{b_{0}=0<b_{1}<b_{2}<\cdots\right\}$ be infinite sequences of real numbers with $D(A)=D(B)$, where, for a set X of real numbers, $D(X)$ denotes the difference set $\{|x-y| \mid x, y \in X\}$. Prove that if A is a B_{3}-set, then $A=B$.
$7 \quad$ For a polynomial P of degree 2000 with distinct real coefficients let $M(P)$ be the set of all polynomials that can be produced from P by permutation of its coefficients. A polynomial P will be called [b] n-independent[/b] if $P(n)=0$ and we can get from any $Q \in M(P)$ a polynomial Q_{1} such that $Q_{1}(n)=0$ by interchanging at most one pair of coefficients of Q. Find all integers n for which n-independent polynomials exist.

- Geometry

1 In the plane we are given two circles intersecting at X and Y. Prove that there exist four points with the following property:
(P) For every circle touching the two given circles at A and B, and meeting the line $X Y$ at C and D, each of the lines $A C, A D, B C, B D$ passes through one of these points.

2 Two circles G_{1} and G_{2} intersect at two points M and N. Let $A B$ be the line tangent to these circles at A and B, respectively, so that M lies closer to $A B$ than N. Let $C D$ be the line parallel to $A B$ and passing through the point M, with C on G_{1} and D on G_{2}. Lines $A C$ and $B D$ meet at E; lines $A N$ and $C D$ meet at P; lines $B N$ and $C D$ meet at Q. Show that $E P=E Q$.

3 Let O be the circumcenter and H the orthocenter of an acute triangle $A B C$. Show that there exist points D, E, and F on sides $B C, C A$, and $A B$ respectively such that

$$
O D+D H=O E+E H=O F+F H
$$

and the lines $A D, B E$, and $C F$ are concurrent.
4 Let $A_{1} A_{2} \ldots A_{n}$ be a convex polygon, $n \geq 4$. Prove that $A_{1} A_{2} \ldots A_{n}$ is cyclic if and only if to each vertex A_{j} one can assign a pair (b_{j}, c_{j}) of real numbers, $j=1,2, \ldots, n$, so that $A_{i} A_{j}=b_{j} c_{i}-b_{i} c_{j}$ for all i, j with $1 \leq i<j \leq n$.

5 The tangents at B and A to the circumcircle of an acute angled triangle $A B C$ meet the tangent at C at T and U respectively. $A T$ meets $B C$ at P, and Q is the midpoint of $A P ; B U$ meets $C A$ at R, and S is the midpoint of $B R$. Prove that $\angle A B Q=\angle B A S$. Determine, in terms of ratios of side lengths, the triangles for which this angle is a maximum.

6 Let $A B C D$ be a convex quadrilateral. The perpendicular bisectors of its sides $A B$ and $C D$ meet at Y. Denote by X a point inside the quadrilateral $A B C D$ such that $\measuredangle A D X=\measuredangle B C X<90^{\circ}$ and $\measuredangle D A X=\measuredangle C B X<90^{\circ}$. Show that $\measuredangle A Y B=2 \cdot \measuredangle A D X$.

7 Ten gangsters are standing on a flat surface, and the distances between them are all distinct. At twelve oclock, when the church bells start chiming, each of them fatally shoots the one among the other nine gangsters who is the nearest. At least how many gangsters will be killed?

8 Let $\mathrm{AH}_{1}, \mathrm{BH}_{2}, \mathrm{CH}_{3}$ be the altitudes of an acute angled triangle $A B C$. Its incircle touches the sides $B C, A C$ and $A B$ at T_{1}, T_{2} and T_{3} respectively. Consider the symmetric images of the lines $H_{1} H_{2}, H_{2} H_{3}$ and $H_{3} H_{1}$ with respect to the lines $T_{1} T_{2}, T_{2} T_{3}$ and $T_{3} T_{1}$. Prove that these images form a triangle whose vertices lie on the incircle of $A B C$.

- Number Theory

1 Determine all positive integers $n \geq 2$ that satisfy the following condition: for all a and b relatively prime to n we have

$$
a \equiv b \quad(\bmod n) \quad \text { if and only if } \quad a b \equiv 1 \quad(\bmod n) .
$$

2 For a positive integer n, let $d(n)$ be the number of all positive divisors of n. Find all positive integers n such that $d(n)^{3}=4 n$.

3 Does there exist a positive integer n such that n has exactly 2000 prime divisors and n divides $2^{n}+1$?

4 Find all triplets of positive integers (a, m, n) such that $a^{m}+1 \mid(a+1)^{n}$.
5 Prove that there exist infinitely many positive integers n such that $p=n r$, where p and r are respectively the semiperimeter and the inradius of a triangle with integer side lengths.

6 Show that the set of positive integers that cannot be represented as a sum of distinct perfect squares is finite.

- Combinatorics

1 A magician has one hundred cards numbered 1 to 100. He puts them into three boxes, a red one, a white one and a blue one, so that each box contains at least one card. A member of the audience draws two cards from two different boxes and announces the sum of numbers on those cards. Given this information, the magician locates the box from which no card has been drawn.

How many ways are there to put the cards in the three boxes so that the trick works?

2 A staircase-brick with 3 steps of width 2 is made of 12 unit cubes. Determine all integers n for which it is possible to build a cube of side n using such bricks.

3 Let $n \geq 4$ be a fixed positive integer. Given a set $S=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ of n points in the plane such that no three are collinear and no four concyclic, let $a_{t}, 1 \leq t \leq n$, be the number of circles $P_{i} P_{j} P_{k}$ that contain P_{t} in their interior, and let

$$
m(S)=a_{1}+a_{2}+\cdots+a_{n} .
$$

Prove that there exists a positive integer $f(n)$, depending only on n, such that the points of S are the vertices of a convex polygon if and only if $m(S)=f(n)$.
$4 \quad$ Let n and k be positive integers such that $\frac{1}{2} n<k \leq \frac{2}{3} n$. Find the least number m for which it is possible to place m pawns on m squares of an $n \times n$ chessboard so that no column or row contains a block of k adjacent unoccupied squares.

5 In the plane we have n rectangles with parallel sides. The sides of distinct rectangles lie on distinct lines. The boundaries of the rectangles cut the plane into connected regions. A region is nice if it has at least one of the vertices of the n rectangles on the boundary. Prove that the sum of the numbers of the vertices of all nice regions is less than 40n. (There can be nonconvex regions as well as regions with more than one boundary curve.)

6 Let p and q be relatively prime positive integers. A subset S of $\{0,1,2, \ldots\}$ is called ideal if $0 \in S$ and for each element $n \in S$, the integers $n+p$ and $n+q$ belong to S. Determine the number of ideal subsets of $\{0,1,2, \ldots\}$.

