Art of Problem Solving

AoPS Community

2017 International Zhautykov Olympiad

International Zhautykov Olympiad 2017

www.artofproblemsolving.com/community/c395126
by IstekOlympiadTeam, tenplusten, user01, Wolowizard, aleksam

Day 1

1 Let $A B C$ be a non-isosceles triangle with circumcircle ω and let H, M be orthocenter and midpoint of $A B$ respectively. Let P, Q be points on the arc $A B$ of ω not containing C such that $\angle A C P=\angle B C Q<\angle A C Q$. Let R, S be the foot of altitudes from H to $C Q, C P$ respectively. Prove that th points P, Q, R, S are concyclic and M is the center of this circle.

2 Find all functions $f: R \rightarrow R$ such that

$$
\left(x+y^{2}\right) f(y f(x))=x y f\left(y^{2}+f(x)\right)
$$

, where $x, y \in \mathbb{R}$
3 Rectangle on a checked paper with length of a unit square side being 1 Is divided into domino figures(two unit square sharing a common edge). Prove that you colour all corners of squares on the edge of rectangle and inside rectangle with 3 colours such that for any two corners with distance 1 the following conditions hold: they are coloured in different colour if the line connecting the two corners is on the border of two domino figures and coloured in same colour if the line connecting the two corners is inside a domino figure.

Day 2

1 Let $\left(a_{n}\right)$ be sequnce of positive integers such that first k members $a_{1}, a_{2}, \ldots, a_{k}$ are distinct positive integers, and for each $n>k$, number a_{n} is the smallest positive integer that can't be represented as a sum of several (possibly one) of the numbers $a_{1}, a_{2}, \ldots, a_{n-1}$. Prove that $a_{n}=2 a_{n-1}$ for all sufficently large n.

2 For each positive integer k denote $C(k)$ to be sum of its distinct prime divisors. For example $C(1)=0, C(2)=2, C(45)=8$. Find all positive integers n for which $C\left(2^{n}+1\right)=C(n)$.

3 Let $A B C D$ be the regular tetrahedron, and M, N points in space. Prove that: $A M \cdot A N+B M$. $B N+C M \cdot C N \geq D M \cdot D N$

