AoPS Community

IMO Shortlist 2002

www.artofproblemsolving.com/community/c3953
by orl, grobber, pohoatza, pavel25, Philip_Leszczynski, dzeta

- Geometry

1 Let B be a point on a circle S_{1}, and let A be a point distinct from B on the tangent at B to S_{1}. Let C be a point not on S_{1} such that the line segment $A C$ meets S_{1} at two distinct points. Let S_{2} be the circle touching $A C$ at C and touching S_{1} at a point D on the opposite side of $A C$ from B. Prove that the circumcentre of triangle $B C D$ lies on the circumcircle of triangle $A B C$.

2 Let $A B C$ be a triangle for which there exists an interior point F such that $\angle A F B=\angle B F C=$ $\angle C F A$. Let the lines $B F$ and $C F$ meet the sides $A C$ and $A B$ at D and E respectively. Prove that

$$
A B+A C \geq 4 D E .
$$

$3 \quad$ The circle S has centre O, and $B C$ is a diameter of S. Let A be a point of S such that $\angle A O B<$ 120°. Let D be the midpoint of the arc $A B$ which does not contain C. The line through O parallel to $D A$ meets the line $A C$ at I. The perpendicular bisector of $O A$ meets S at E and at F. Prove that I is the incentre of the triangle $C E F$.
$4 \quad$ Circles S_{1} and S_{2} intersect at points P and Q. Distinct points A_{1} and B_{1} (not at P or Q) are selected on S_{1}. The lines $A_{1} P$ and $B_{1} P$ meet S_{2} again at A_{2} and B_{2} respectively, and the lines $A_{1} B_{1}$ and $A_{2} B_{2}$ meet at C. Prove that, as A_{1} and B_{1} vary, the circumcentres of triangles $A_{1} A_{2} C$ all lie on one fixed circle.
$5 \quad$ For any set S of five points in the plane, no three of which are collinear, let $M(S)$ and $m(S)$ denote the greatest and smallest areas, respectively, of triangles determined by three points from S. What is the minimum possible value of $M(S) / m(S)$?

6 Let $n \geq 3$ be a positive integer. Let $C_{1}, C_{2}, C_{3}, \ldots, C_{n}$ be unit circles in the plane, with centres $O_{1}, O_{2}, O_{3}, \ldots, O_{n}$ respectively. If no line meets more than two of the circles, prove that

$$
\sum_{1 \leq i<j \leq n} \frac{1}{O_{i} O_{j}} \leq \frac{(n-1) \pi}{4}
$$

7 The incircle Ω of the acute-angled triangle $A B C$ is tangent to its side $B C$ at a point K. Let $A D$ be an altitude of triangle $A B C$, and let M be the midpoint of the segment $A D$. If N is the
common point of the circle Ω and the line $K M$ (distinct from K), then prove that the incircle Ω and the circumcircle of triangle $B C N$ are tangent to each other at the point N.

8 Let two circles S_{1} and S_{2} meet at the points A and B. A line through A meets S_{1} again at C and S_{2} again at D. Let M, N, K be three points on the line segments $C D, B C, B D$ respectively, with $M N$ parallel to $B D$ and $M K$ parallel to $B C$. Let E and F be points on those arcs $B C$ of S_{1} and $B D$ of S_{2} respectively that do not contain A. Given that $E N$ is perpendicular to $B C$ and $F K$ is perpendicular to $B D$ prove that $\angle E M F=90^{\circ}$.

- Number Theory

1 What is the smallest positive integer t such that there exist integers $x_{1}, x_{2}, \ldots, x_{t}$ with

$$
x_{1}^{3}+x_{2}^{3}+\ldots+x_{t}^{3}=2002^{2002} ?
$$

2 Let $n \geq 2$ be a positive integer, with divisors $1=d_{1}<d_{2}<\ldots<d_{k}=n$. Prove that $d_{1} d_{2}+$ $d_{2} d_{3}+\ldots+d_{k-1} d_{k}$ is always less than n^{2}, and determine when it is a divisor of n^{2}.

3 Let $p_{1}, p_{2}, \ldots, p_{n}$ be distinct primes greater than 3 . Show that $2^{p_{1} p_{2} \cdots p_{n}}+1$ has at least 4^{n} divisors.

4 Is there a positive integer m such that the equation

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a b c}=\frac{m}{a+b+c}
$$

has infinitely many solutions in positive integers a, b, c ?
5 Let $m, n \geq 2$ be positive integers, and let $a_{1}, a_{2}, \ldots, a_{n}$ be integers, none of which is a multiple of m^{n-1}. Show that there exist integers $e_{1}, e_{2}, \ldots, e_{n}$, not all zero, with $\left|e_{i}\right|<m$ for all i, such that $e_{1} a_{1}+e_{2} a_{2}+\ldots+e_{n} a_{n}$ is a multiple of m^{n}.

6 Find all pairs of positive integers $m, n \geq 3$ for which there exist infinitely many positive integers a such that

$$
\frac{a^{m}+a-1}{a^{n}+a^{2}-1}
$$

is itself an integer.
Laurentiu Panaitopol, Romania

- Algebra

1 Find all functions f from the reals to the reals such that

$$
f(f(x)+y)=2 x+f(f(y)-x)
$$

for all real x, y.
2 Let a_{1}, a_{2}, \ldots be an infinite sequence of real numbers, for which there exists a real number c with $0 \leq a_{i} \leq c$ for all i, such that

$$
\left|a_{i}-a_{j}\right| \geq \frac{1}{i+j} \quad \text { for all } i, j \text { with } i \neq j
$$

Prove that $c \geq 1$.
3 Let P be a cubic polynomial given by $P(x)=a x^{3}+b x^{2}+c x+d$, where a, b, c, d are integers and $a \neq 0$. Suppose that $x P(x)=y P(y)$ for infinitely many pairs x, y of integers with $x \neq y$. Prove that the equation $P(x)=0$ has an integer root.

4 Find all functions from the reals to the reals such that

$$
(f(x)+f(z))(f(y)+f(t))=f(x y-z t)+f(x t+y z)
$$

for all real x, y, z, t.
5 Let n be a positive integer that is not a perfect cube. Define real numbers a, b, c by

$$
a=\sqrt[3]{n}, \quad b=\frac{1}{a-[a]}, \quad c=\frac{1}{b-[b]},
$$

where $[x]$ denotes the integer part of x. Prove that there are infinitely many such integers n with the property that there exist integers r, s, t, not all zero, such that $r a+s b+t c=0$.

6 Let A be a non-empty set of positive integers. Suppose that there are positive integers $b_{1}, \ldots b_{n}$ and c_{1}, \ldots, c_{n} such that

- for each i the set $b_{i} A+c_{i}=\left\{b_{i} a+c_{i}: a \in A\right\}$ is a subset of A, and
- the sets $b_{i} A+c_{i}$ and $b_{j} A+c_{j}$ are disjoint whenever $i \neq j$

Prove that

$$
\frac{1}{b_{1}}+\ldots+\frac{1}{b_{n}} \leq 1
$$

- Combinatorics

1 Let n be a positive integer. Each point (x, y) in the plane, where x and y are non-negative integers with $x+y<n$, is coloured red or blue, subject to the following condition: if a point (x, y) is red, then so are all points $\left(x^{\prime}, y^{\prime}\right)$ with $x^{\prime} \leq x$ and $y^{\prime} \leq y$. Let A be the number of ways to choose n blue points with distinct x-coordinates, and let B be the number of ways to choose n blue points with distinct y-coordinates. Prove that $A=B$.

2 For n an odd positive integer, the unit squares of an $n \times n$ chessboard are coloured alternately black and white, with the four corners coloured black. A it tromino is an L-shape formed by three connected unit squares. For which values of n is it possible to cover all the black squares with non-overlapping trominos? When it is possible, what is the minimum number of trominos needed?

3 Let n be a positive integer. A sequence of n positive integers (not necessarily distinct) is called full if it satisfies the following condition: for each positive integer $k \geq 2$, if the number k appears in the sequence then so does the number $k-1$, and moreover the first occurrence of $k-1$ comes before the last occurrence of k. For each n, how many full sequences are there?

4 Let T be the set of ordered triples (x, y, z), where x, y, z are integers with $0 \leq x, y, z \leq 9$. Players A and B play the following guessing game. Player A chooses a triple (x, y, z) in T, and Player B has to discover A 's triple in as few moves as possible. A move consists of the following: B gives A a triple (a, b, c) in T, and A replies by giving B the number $|x+y-a-b|+|y+z-b-c|+$ $|z+x-c-a|$. Find the minimum number of moves that B needs to be sure of determining A's triple.

5 Let $r \geq 2$ be a fixed positive integer, and let F be an infinite family of sets, each of size r, no two of which are disjoint. Prove that there exists a set of size $r-1$ that meets each set in F.

6 Let n be an even positive integer. Show that there is a permutation $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of $(1,2, \ldots, n)$ such that for every $i \in\{1,2, \ldots, n\}$, the number x_{i+1} is one of the numbers $2 x_{i}, 2 x_{i}-1,2 x_{i}-n$, $2 x_{i}-n-1$. Hereby, we use the cyclic subscript convention, so that x_{n+1} means x_{1}.

7 Among a group of 120 people, some pairs are friends. A weak quartet is a set of four people containing exactly one pair of friends. What is the maximum possible number of weak quartets ?

