

IMO Shortlist 2003

www.artofproblemsolving.com/community/c3954

by iandrei, sebadollahi, darij grinberg, grobber, vinoth_90_2004, orl, Night_Witch123, Fedor Petrov, Anonymous, iura, Myth, pluricomplex, flip2004, rope0811, Dapet, jmerry, heartwork, hxtung

- Geometry

- 1 Let ABCD be a cyclic quadrilateral. Let P, Q, R be the feet of the perpendiculars from D to the lines BC, CA, AB, respectively. Show that PQ = QR if and only if the bisectors of $\angle ABC$ and $\angle ADC$ are concurrent with AC.
- **2** Three distinct points *A*, *B*, and *C* are fixed on a line in this order. Let Γ be a circle passing through *A* and *C* whose center does not lie on the line *AC*. Denote by *P* the intersection of the tangents to Γ at *A* and *C*. Suppose Γ meets the segment *PB* at *Q*. Prove that the intersection of the bisector of $\angle AQC$ and the line *AC* does not depend on the choice of Γ .
- **3** Let *ABC* be a triangle and let *P* be a point in its interior. Denote by *D*, *E*, *F* the feet of the perpendiculars from *P* to the lines *BC*, *CA*, *AB*, respectively. Suppose that

$$AP^{2} + PD^{2} = BP^{2} + PE^{2} = CP^{2} + PF^{2}.$$

Denote by I_A , I_B , I_C the excenters of the triangle ABC. Prove that P is the circumcenter of the triangle $I_A I_B I_C$.

Proposed by C.R. Pranesachar, India

4 Let Γ_1 , Γ_2 , Γ_3 , Γ_4 be distinct circles such that Γ_1 , Γ_3 are externally tangent at P, and Γ_2 , Γ_4 are externally tangent at the same point P. Suppose that Γ_1 and Γ_2 ; Γ_2 and Γ_3 ; Γ_3 and Γ_4 ; Γ_4 and Γ_1 meet at A, B, C, D, respectively, and that all these points are different from P. Prove that

$$\frac{AB \cdot BC}{AD \cdot DC} = \frac{PB^2}{PD^2}.$$

5 Let ABC be an isosceles triangle with AC = BC, whose incentre is *I*. Let *P* be a point on the circumcircle of the triangle AIB lying inside the triangle ABC. The lines through *P* parallel to CA and CB meet AB at *D* and *E*, respectively. The line through *P* parallel to AB meets CA and CB at *F* and *G*, respectively. Prove that the lines DF and EG intersect on the circumcircle of the triangle ABC.

Proposed by Hojoo Lee

- **6** Each pair of opposite sides of a convex hexagon has the following property: the distance between their midpoints is equal to $\frac{\sqrt{3}}{2}$ times the sum of their lengths. Prove that all the angles of the hexagon are equal.
- 7 Let *ABC* be a triangle with semiperimeter *s* and inradius *r*. The semicircles with diameters *BC*, *CA*, *AB* are drawn on the outside of the triangle *ABC*. The circle tangent to all of these three semicircles has radius *t*. Prove that

$$\frac{s}{2} < t \le \frac{s}{2} + \left(1 - \frac{\sqrt{3}}{2}\right)r.$$

Alternative formulation. In a triangle ABC, construct circles with diameters BC, CA, and AB, respectively. Construct a circle w externally tangent to these three circles. Let the radius of this circle w be t.

Prove: $\frac{s}{2} < t \le \frac{s}{2} + \frac{1}{2} (2 - \sqrt{3}) r$, where r is the inradius and s is the semiperimeter of triangle *ABC*.

Proposed by Dirk Laurie, South Africa

Number Theory

1 Let *m* be a fixed integer greater than 1. The sequence x_0, x_1, x_2, \ldots is defined as follows:

$$x_{i} = \begin{cases} 2^{i} & \text{if } 0 \le i \le m - 1; \\ \sum_{j=1}^{m} x_{i-j} & \text{if } i \ge m. \end{cases}$$

Find the greatest k for which the sequence contains k consecutive terms divisible by m.

Proposed by Marcin Kuczma, Poland

2 Each positive integer *a* undergoes the following procedure in order to obtain the number d = d(a):

(i) move the last digit of *a* to the first position to obtain the numb er *b*;

(ii) square b to obtain the number c;

(iii) move the first digit of c to the end to obtain the number d.

(All the numbers in the problem are considered to be represented in base 10.) For example, for a = 2003, we get b = 3200, c = 10240000, and d = 02400001 = 2400001 = d(2003).)

Find all numbers *a* for which $d(a) = a^2$.

Proposed by Zoran Sunic, USA

3 Determine all pairs of positive integers (*a*, *b*) such that

$$\frac{a^2}{2ab^2 - b^3 + 1}$$

is a positive integer.

4 Let b be an integer greater than 5. For each positive integer n, consider the number

$$x_n = \underbrace{11\cdots 1}_{n-1} \underbrace{22\cdots 2}_n 5,$$

written in base b.

Prove that the following condition holds if and only if b = 10: [i]there exists a positive integer M such that for any integer n greater than M, the number x_n is a perfect square.[/i]

Proposed by Laurentiu Panaitopol, Romania

5 An integer n is said to be *good* if |n| is not the square of an integer. Determine all integers m with the following property: m can be represented, in infinitely many ways, as a sum of three distinct good integers whose product is the square of an odd integer.

Proposed by Hojoo Lee, Korea

- **6** Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^p p$ is not divisible by q.
- **7** The sequence a_0, a_1, a_2, \ldots is defined as follows:

 $a_0 = 2,$ $a_{k+1} = 2a_k^2 - 1$ for $k \ge 0.$

Prove that if an odd prime p divides a_n , then 2^{n+3} divides $p^2 - 1$.

Hi guys,

Here is a nice problem:

Let be given a sequence a_n such that $a_0 = 2$ and $a_{n+1} = 2a_n^2 - 1$. Show that if p is an odd prime such that $p|a_n$ then we have $p^2 \equiv 1 \pmod{2^{n+3}}$

Here are some futher question proposed by me :Prove or disprove that :

1) $gcd(n, a_n) = 1$

2) for every odd prime number p we have $a_m \equiv \pm 1 \pmod{p}$ where $m = \frac{p^2 - 1}{2^k}$ where k = 1 or 2 Thanks kiu si u

Edited by Orl.

8	Let p be a prime number and let A be a set of positive integers that satisfies the following conditions:
	(i) the set of prime divisors of the elements in A consists of $p-1$ elements;
	(ii) for any nonempty subset of A , the product of its elements is not a perfect p -th power.
	What is the largest possible number of elements in A ?
-	Algebra
1	Let a_{ij} $i = 1, 2, 3$; $j = 1, 2, 3$ be real numbers such that a_{ij} is positive for $i = j$ and negative for $i \neq j$.
	Prove the existence of positive real numbers c_1 , c_2 , c_3 such that the numbers
	$a_{11}c_1 + a_{12}c_2 + a_{13}c_3$, $a_{21}c_1 + a_{22}c_2 + a_{23}c_3$, $a_{31}c_1 + a_{32}c_2 + a_{33}c_3$
	are either all negative, all positive, or all zero.
	Proposed by Kiran Kedlaya, USA
2	Find all nondecreasing functions $f : \mathbb{R} \to \mathbb{R}$ such that (i) $f(0) = 0, f(1) = 1;$ (ii) $f(a) + f(b) = f(a)f(b) + f(a + b - ab)$ for all real numbers a, b such that $a < 1 < b$.
	Proposed by A. Di Pisquale & D. Matthews, Australia
3	Consider pairs of the sequences of positive real numbers
	$a_1 \ge a_2 \ge a_3 \ge \cdots, \qquad b_1 \ge b_2 \ge b_3 \ge \cdots$
	and the sums
	$A_n = a_1 + \dots + a_n, B_n = b_1 + \dots + b_n; \qquad n = 1, 2, \dots$
	For any pair define $c_n = \min\{a_i, b_i\}$ and $C_n = c_1 + \cdots + c_n$, $n = 1, 2, \ldots$
	(1) Does there exist a pair $(a_i)_{i\geq 1}$, $(b_i)_{i\geq 1}$ such that the sequences $(A_n)_{n\geq 1}$ and $(B_n)_{n\geq 1}$ are unbounded while the sequence $(C_n)_{n\geq 1}$ is bounded?
	(2) Does the answer to question (1) change by assuming additionally that $b_i=1/i$, $i=1,2,\ldots$?
	Justify your answer.

2003 IMO Shortlist

$$\left(\sum_{i,j=1}^{n} |x_i - x_j|\right)^2 \le \frac{2(n^2 - 1)}{3} \sum_{i,j=1}^{n} (x_i - x_j)^2.$$

Show that the equality holds if and only if x_1, \ldots, x_n is an arithmetic sequence.

5 Let \mathbb{R}^+ be the set of all positive real numbers. Find all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ that satisfy the following conditions:

-
$$f(xyz) + f(x) + f(y) + f(z) = f(\sqrt{xy})f(\sqrt{yz})f(\sqrt{zx})$$
 for all $x, y, z \in \mathbb{R}^+$;

- f(x) < f(y) for all $1 \le x < y$.

Proposed by Hojoo Lee, Korea

6 Let *n* be a positive integer and let (x_1, \ldots, x_n) , (y_1, \ldots, y_n) be two sequences of positive real numbers. Suppose (z_2, \ldots, z_{2n}) is a sequence of positive real numbers such that $z_{i+j}^2 \ge x_i y_j$ for all $1 \le i, j \le n$.

Let $M = \max\{z_2, \ldots, z_{2n}\}$. Prove that

$$\left(\frac{M+z_2+\dots+z_{2n}}{2n}\right)^2 \ge \left(\frac{x_1+\dots+x_n}{n}\right) \left(\frac{y_1+\dots+y_n}{n}\right)$$

Edited by Orl.

Proposed by Reid Barton, USA

Combinatorics

AoPS Community

1 Let A be a 101-element subset of the set $S = \{1, 2, ..., 1000000\}$. Prove that there exist numbers $t_1, t_2, ..., t_{100}$ in S such that the sets

$$A_j = \{x + t_j \mid x \in A\}, \qquad j = 1, 2, \dots, 100$$

are pairwise disjoint.

2 Let D_1 , D_2 , ..., D_n be closed discs in the plane. (A closed disc is the region limited by a circle, taken jointly with this circle.) Suppose that every point in the plane is contained in at most 2003 discs D_i . Prove that there exists a disc D_k which intersects at most $7 \cdot 2003 - 1 = 14020$ other discs D_i .

3 Let $n \ge 5$ be a given integer. Determine the greatest integer k for which there exists a polygon with n vertices (convex or not, with non-selfintersecting boundary) having k internal right angles.

Proposed by Juozas Juvencijus Macys, Lithuania

4 Let
$$x_1, \ldots, x_n$$
 and y_1, \ldots, y_n be real numbers. Let $A = (a_{ij})_{1 \le i,j \le n}$ be the matrix with entries

$$a_{ij} = \begin{cases} 1, & \text{if } x_i + y_j \ge 0; \\ 0, & \text{if } x_i + y_j < 0. \end{cases}$$

Suppose that *B* is an $n \times n$ matrix with entries 0, 1 such that the sum of the elements in each row and each column of *B* is equal to the corresponding sum for the matrix *A*. Prove that A = B.

5 Every point with integer coordinates in the plane is the center of a disk with radius 1/1000.

(1) Prove that there exists an equilateral triangle whose vertices lie in different discs.

(2) Prove that every equilateral triangle with vertices in different discs has side-length greater than 96.

Radu Gologan, Romania

The "¿ 96" in (b) can be strengthened to "¿ 124". By the way, part (a) of this problem is the place where I used the well-known "Dedekind" theorem (http://mathlinks.ro/viewtopic. php?t=5537).

6 Let f(k) be the number of integers *n* satisfying the following conditions:

(i) $0 \le n < 10^k$ so n has exactly k digits (in decimal notation), with leading zeroes allowed;

(ii) the digits of n can be permuted in such a way that they yield an integer divisible by 11.

Prove that f(2m) = 10f(2m-1) for every positive integer m.

Proposed by Dirk Laurie, South Africa

Art of Problem Solving is an ACS WASC Accredited School.

2003 IMO Shortlist