Art of Problem Solving

AoPS Community

IMO Shortlist 2003

www.artofproblemsolving.com/community/c3954
by iandrei, sebadollahi, darij grinberg, grobber, vinoth_90_2004, orl, Night_Witch123, Fedor Petrov, Anonymous, iura, Myth, pluricomplex, flip2004, rope0811, Dapet, jmerry, heartwork, hxtung

- Geometry

1 Let $A B C D$ be a cyclic quadrilateral. Let P, Q, R be the feet of the perpendiculars from D to the lines $B C, C A, A B$, respectively. Show that $P Q=Q R$ if and only if the bisectors of $\angle A B C$ and $\angle A D C$ are concurrent with $A C$.

2 Three distinct points A, B, and C are fixed on a line in this order. Let Γ be a circle passing through A and C whose center does not lie on the line $A C$. Denote by P the intersection of the tangents to Γ at A and C. Suppose Γ meets the segment $P B$ at Q. Prove that the intersection of the bisector of $\angle A Q C$ and the line $A C$ does not depend on the choice of Γ.

3 Let $A B C$ be a triangle and let P be a point in its interior. Denote by D, E, F the feet of the perpendiculars from P to the lines $B C, C A, A B$, respectively. Suppose that

$$
A P^{2}+P D^{2}=B P^{2}+P E^{2}=C P^{2}+P F^{2} .
$$

Denote by I_{A}, I_{B}, I_{C} the excenters of the triangle $A B C$. Prove that P is the circumcenter of the triangle $I_{A} I_{B} I_{C}$.

Proposed by C.R. Pranesachar, India
4 Let $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}$ be distinct circles such that Γ_{1}, Γ_{3} are externally tangent at P, and Γ_{2}, Γ_{4} are externally tangent at the same point P. Suppose that Γ_{1} and $\Gamma_{2} ; \Gamma_{2}$ and $\Gamma_{3} ; \Gamma_{3}$ and $\Gamma_{4} ; \Gamma_{4}$ and Γ_{1} meet at A, B, C, D, respectively, and that all these points are different from P. Prove that

$$
\frac{A B \cdot B C}{A D \cdot D C}=\frac{P B^{2}}{P D^{2}}
$$

5 Let $A B C$ be an isosceles triangle with $A C=B C$, whose incentre is I. Let P be a point on the circumcircle of the triangle $A I B$ lying inside the triangle $A B C$. The lines through P parallel to $C A$ and $C B$ meet $A B$ at D and E, respectively. The line through P parallel to $A B$ meets $C A$ and $C B$ at F and G, respectively. Prove that the lines $D F$ and $E G$ intersect on the circumcircle of the triangle $A B C$.

Proposed by Hojoo Lee

6 Each pair of opposite sides of a convex hexagon has the following property: the distance between their midpoints is equal to $\frac{\sqrt{3}}{2}$ times the sum of their lengths. Prove that all the angles of the hexagon are equal.

7 Let $A B C$ be a triangle with semiperimeter s and inradius r. The semicircles with diameters $B C, C A, A B$ are drawn on the outside of the triangle $A B C$. The circle tangent to all of these three semicircles has radius t. Prove that

$$
\frac{s}{2}<t \leq \frac{s}{2}+\left(1-\frac{\sqrt{3}}{2}\right) r .
$$

Alternative formulation. In a triangle $A B C$, construct circles with diameters $B C, C A$, and $A B$, respectively. Construct a circle w externally tangent to these three circles. Let the radius of this circle w be t.
Prove: $\frac{s}{2}<t \leq \frac{s}{2}+\frac{1}{2}(2-\sqrt{3}) r$, where r is the inradius and s is the semiperimeter of triangle $A B C$.

Proposed by Dirk Laurie, South Africa

- Number Theory

1 Let m be a fixed integer greater than 1 . The sequence $x_{0}, x_{1}, x_{2}, \ldots$ is defined as follows:

$$
x_{i}= \begin{cases}2^{i} & \text { if } 0 \leq i \leq m-1 \\ \sum_{j=1}^{m} x_{i-j} & \text { if } i \geq m .\end{cases}
$$

Find the greatest k for which the sequence contains k consecutive terms divisible by m.
Proposed by Marcin Kuczma, Poland
2 Each positive integer a undergoes the following procedure in order to obtain the number $d=$ $d(a)$:
(i) move the last digit of a to the first position to obtain the numb er b;
(ii) square b to obtain the number c;
(iii) move the first digit of c to the end to obtain the number d.
(All the numbers in the problem are considered to be represented in base 10.) For example, for $a=2003$, we get $b=3200, c=10240000$, and $d=02400001=2400001=d(2003)$.)
Find all numbers a for which $d(a)=a^{2}$.
Proposed by Zoran Sunic, USA

3 Determine all pairs of positive integers (a, b) such that

$$
\frac{a^{2}}{2 a b^{2}-b^{3}+1}
$$

is a positive integer.
4 Let b be an integer greater than 5 . For each positive integer n, consider the number

$$
x_{n}=\underbrace{11 \cdots 1}_{n-1} \underbrace{22 \cdots 2}_{n} 5,
$$

written in base b.
Prove that the following condition holds if and only if $b=10$: [i]there exists a positive integer M such that for any integer n greater than M, the number x_{n} is a perfect square.[/i]

Proposed by Laurentiu Panaitopol, Romania

$5 \quad$ An integer n is said to be good if $|n|$ is not the square of an integer. Determine all integers m with the following property: m can be represented, in infinitely many ways, as a sum of three distinct good integers whose product is the square of an odd integer.
Proposed by Hojoo Lee, Korea
6 Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^{p}-p$ is not divisible by q.

7 The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is defined as follows:

$$
a_{0}=2, \quad a_{k+1}=2 a_{k}^{2}-1 \quad \text { for } k \geq 0 .
$$

Prove that if an odd prime p divides a_{n}, then 2^{n+3} divides $p^{2}-1$.

Hi guys,
Here is a nice problem:
Let be given a sequence a_{n} such that $a_{0}=2$ and $a_{n+1}=2 a_{n}^{2}-1$. Show that if p is an odd prime such that $p \mid a_{n}$ then we have $p^{2} \equiv 1\left(\bmod 2^{n+3}\right)$
Here are some futher question proposed by me :Prove or disprove that :

1) $\operatorname{gcd}\left(n, a_{n}\right)=1$
2) for every odd prime number p we have $a_{m} \equiv \pm 1(\bmod p)$ where $m=\frac{p^{2}-1}{2^{k}}$ where $k=1$ or 2 Thanks kiu si u

Edited by Orl.

8 Let p be a prime number and let A be a set of positive integers that satisfies the following conditions:
(i) the set of prime divisors of the elements in A consists of $p-1$ elements;
(ii) for any nonempty subset of A, the product of its elements is not a perfect p-th power.

What is the largest possible number of elements in A ?

- Algebra

1 Let $a_{i j} i=1,2,3 ; j=1,2,3$ be real numbers such that $a_{i j}$ is positive for $i=j$ and negative for $i \neq j$.

Prove the existence of positive real numbers c_{1}, c_{2}, c_{3} such that the numbers

$$
a_{11} c_{1}+a_{12} c_{2}+a_{13} c_{3}, \quad a_{21} c_{1}+a_{22} c_{2}+a_{23} c_{3}, \quad a_{31} c_{1}+a_{32} c_{2}+a_{33} c_{3}
$$

are either all negative, all positive, or all zero.
Proposed by Kiran Kedlaya, USA
2 Find all nondecreasing functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that
(i) $f(0)=0, f(1)=1$;
(ii) $f(a)+f(b)=f(a) f(b)+f(a+b-a b)$ for all real numbers a, b such that $a<1<b$.

Proposed by A. Di Pisquale \& D. Matthews, Australia
3 Consider pairs of the sequences of positive real numbers

$$
a_{1} \geq a_{2} \geq a_{3} \geq \cdots, \quad b_{1} \geq b_{2} \geq b_{3} \geq \cdots
$$

and the sums

$$
A_{n}=a_{1}+\cdots+a_{n}, \quad B_{n}=b_{1}+\cdots+b_{n} ; \quad n=1,2, \cdots
$$

For any pair define $c_{n}=\min \left\{a_{i}, b_{i}\right\}$ and $C_{n}=c_{1}+\cdots+c_{n}, n=1,2, \ldots$.
(1) Does there exist a pair $\left(a_{i}\right)_{i \geq 1},\left(b_{i}\right)_{i \geq 1}$ such that the sequences $\left(A_{n}\right)_{n \geq 1}$ and $\left(B_{n}\right)_{n \geq 1}$ are unbounded while the sequence $\left(C_{n}\right)_{n \geq 1}$ is bounded?
(2) Does the answer to question (1) change by assuming additionally that $b_{i}=1 / i, i=1,2, \ldots$? Justify your answer.

4 Let n be a positive integer and let $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ be real numbers.
Prove that

$$
\left(\sum_{i, j=1}^{n}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2\left(n^{2}-1\right)}{3} \sum_{i, j=1}^{n}\left(x_{i}-x_{j}\right)^{2} .
$$

Show that the equality holds if and only if x_{1}, \ldots, x_{n} is an arithmetic sequence.
$5 \quad$ Let \mathbb{R}^{+}be the set of all positive real numbers. Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$that satisfy the following conditions:
$-f(x y z)+f(x)+f(y)+f(z)=f(\sqrt{x y}) f(\sqrt{y z}) f(\sqrt{z x})$ for all $x, y, z \in \mathbb{R}^{+}$;

- $f(x)<f(y)$ for all $1 \leq x<y$.

Proposed by Hojoo Lee, Korea
6 Let n be a positive integer and let $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)$ be two sequences of positive real numbers. Suppose $\left(z_{2}, \ldots, z_{2 n}\right)$ is a sequence of positive real numbers such that $z_{i+j}^{2} \geq x_{i} y_{j}$ for all $1 \leq i, j \leq n$.

Let $M=\max \left\{z_{2}, \ldots, z_{2 n}\right\}$. Prove that

$$
\left(\frac{M+z_{2}+\cdots+z_{2 n}}{2 n}\right)^{2} \geq\left(\frac{x_{1}+\cdots+x_{n}}{n}\right)\left(\frac{y_{1}+\cdots+y_{n}}{n}\right) .
$$

Edited by Orl.

Proposed by Reid Barton, USA

- Combinatorics

1 Let A be a 101-element subset of the set $S=\{1,2, \ldots, 1000000\}$. Prove that there exist numbers $t_{1}, t_{2}, \ldots, t_{100}$ in S such that the sets

$$
A_{j}=\left\{x+t_{j} \mid x \in A\right\}, \quad j=1,2, \ldots, 100
$$

are pairwise disjoint.
2 Let $D_{1}, D_{2}, \ldots, D_{n}$ be closed discs in the plane. (A closed disc is the region limited by a circle, taken jointly with this circle.) Suppose that every point in the plane is contained in at most 2003 discs D_{i}. Prove that there exists a disc D_{k} which intersects at most $7 \cdot 2003-1=14020$ other discs D_{i}.

3 Let $n \geq 5$ be a given integer. Determine the greatest integer k for which there exists a polygon with n vertices (convex or not, with non-selfintersecting boundary) having k internal right angles.

Proposed by Juozas Juvencijus Macys, Lithuania

4 Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be real numbers. Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be the matrix with entries

$$
a_{i j}= \begin{cases}1, & \text { if } x_{i}+y_{j} \geq 0 \\ 0, & \text { if } x_{i}+y_{j}<0\end{cases}
$$

Suppose that B is an $n \times n$ matrix with entries 0,1 such that the sum of the elements in each row and each column of B is equal to the corresponding sum for the matrix A. Prove that $A=B$.

5 Every point with integer coordinates in the plane is the center of a disk with radius $1 / 1000$.
(1) Prove that there exists an equilateral triangle whose vertices lie in different discs.
(2) Prove that every equilateral triangle with vertices in different discs has side-length greater than 96.

Radu Gologan, Romania

The " $¿ 96$ " in (b) can be strengthened to " $¿ 124$ ". By the way, part (a) of this problem is the place where I used the well-known "Dedekind" theorem (http://mathlinks.ro/viewtopic. php? $t=5537$).

6 Let $f(k)$ be the number of integers n satisfying the following conditions:
(i) $0 \leq n<10^{k}$ so n has exactly k digits (in decimal notation), with leading zeroes allowed;
(ii) the digits of n can be permuted in such a way that they yield an integer divisible by 11 .

Prove that $f(2 m)=10 f(2 m-1)$ for every positive integer m.
Proposed by Dirk Laurie, South Africa

