

IMO Shortlist 2006

www.artofproblemsolving.com/community/c3957

by mattilgale, malinger, pohoatza, Davron, ZetaX, iura, Igor, Valentin Vornicu, e.lopes, cancer

– Algebra

1 A sequence of real numbers a_0, a_1, a_2, \ldots is defined by the formula

 $a_{i+1} = \lfloor a_i \rfloor \cdot \langle a_i \rangle$ for $i \ge 0$;

here a_0 is an arbitrary real number, $\lfloor a_i \rfloor$ denotes the greatest integer not exceeding a_i , and $\langle a_i \rangle = a_i - \lfloor a_i \rfloor$. Prove that $a_i = a_{i+2}$ for *i* sufficiently large.

Proposed by Harmel Nestra, Estionia

2 The sequence of real numbers a_0, a_1, a_2, \ldots is defined recursively by

$$a_0 = -1,$$
 $\sum_{k=0}^n \frac{a_{n-k}}{k+1} = 0$ for $n \ge 1.$

Show that $a_n > 0$ for all $n \ge 1$.

Proposed by Mariusz Skalba, Poland

3 The sequence $c_0, c_1, ..., c_n, ...$ is defined by $c_0 = 1, c_1 = 0$, and $c_{n+2} = c_{n+1} + c_n$ for $n \ge 0$. Consider the set *S* of ordered pairs (x, y) for which there is a finite set *J* of positive integers such that $x = \sum_{j \in J} c_j, y = \sum_{j \in J} c_{j-1}$. Prove that there exist real numbers α, β , and *M* with the following property: An ordered pair of nonnegative integers (x, y) satisfies the inequality

$$m < \alpha x + \beta y < M$$

if and only if $(x, y) \in S$.

Remark: A sum over the elements of the empty set is assumed to be 0.

4 Prove the inequality:

$$\sum_{i < j} \frac{a_i a_j}{a_i + a_j} \le \frac{n}{2(a_1 + a_2 + \dots + a_n)} \cdot \sum_{i < j} a_i a_j$$

for positive reals a_1, a_2, \ldots, a_n .

Proposed by Dusan Dukic, Serbia

5 If *a*, *b*, *c* are the sides of a triangle, prove that

$$\frac{\sqrt{b+c-a}}{\sqrt{b}+\sqrt{c}-\sqrt{a}} + \frac{\sqrt{c+a-b}}{\sqrt{c}+\sqrt{a}-\sqrt{b}} + \frac{\sqrt{a+b-c}}{\sqrt{a}+\sqrt{b}-\sqrt{c}} \le 3$$

Proposed by Hojoo Lee, Korea

6 Determine the least real number *M* such that the inequality

 $|ab(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2)| \le M(a^2 + b^2 + c^2)^2$

holds for all real numbers *a*, *b* and *c*.

- Combinatorics
- 1 We have $n \ge 2$ lamps $L_1, ..., L_n$ in a row, each of them being either on or off. Every second we simultaneously modify the state of each lamp as follows: if the lamp L_i and its neighbours (only one neighbour for i = 1 or i = n, two neighbours for other i) are in the same state, then L_i is switched off; otherwise, L_i is switched on.

Initially all the lamps are off except the leftmost one which is on.

- (a) Prove that there are infinitely many integers n for which all the lamps will eventually be off.
- (b) Prove that there are infinitely many integers n for which the lamps will never be all off.
- **2** Let *P* be a regular 2006-gon. A diagonal is called *good* if its endpoints divide the boundary of *P* into two parts, each composed of an odd number of sides of *P*. The sides of *P* are also called *good*.

Suppose P has been dissected into triangles by 2003 diagonals, no two of which have a common point in the interior of P. Find the maximum number of isosceles triangles having two good sides that could appear in such a configuration.

3 Let *S* be a finite set of points in the plane such that no three of them are on a line. For each convex polygon *P* whose vertices are in *S*, let a(P) be the number of vertices of *P*, and let b(P) be the number of points of *S* which are outside *P*. A line segment, a point, and the empty set are considered as convex polygons of 2, 1, and 0 vertices respectively. Prove that for every real number *x*

$$\sum_{P} x^{a(P)} (1-x)^{b(P)} = 1,$$

where the sum is taken over all convex polygons with vertices in S.

Alternative formulation:

Let *M* be a finite point set in the plane and no three points are collinear. A subset *A* of *M* will be called round if its elements is the set of vertices of a convex A-gon V(A). For each round subset let r(A) be the number of points from *M* which are exterior from the convex A-gon

V(A). Subsets with 0, 1 and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset A of M construct the polynomial

$$P_A(x) = x^{|A|} (1-x)^{r(A)}$$

Show that the sum of polynomials for all round subsets is exactly the polynomial P(x) = 1.

Proposed by Federico Ardila, Colombia

4 A cake has the form of an $n \ge n$ square composed of n^2 unit squares. Strawberries lie on some of the unit squares so that each row or column contains exactly one strawberry; call this arrangement A.

Let \mathcal{B} be another such arrangement. Suppose that every grid rectangle with one vertex at the top left corner of the cake contains no fewer strawberries of arrangement \mathcal{B} than of arrangement \mathcal{A} . Prove that arrangement \mathcal{B} can be obtained from \mathcal{A} by performing a number of switches, defined as follows:

A switch consists in selecting a grid rectangle with only two strawberries, situated at its top right corner and bottom left corner, and moving these two strawberries to the other two corners of that rectangle.

5 An (n, k) – tournament is a contest with n players held in k rounds such that:

(*i*) Each player plays in each round, and every two players meet at most once. (*ii*) If player A meets player B in round *i*, player C meets player D in round *i*, and player A meets player C in round *j*, then player B meets player D in round *j*.

Determine all pairs (n, k) for which there exists an (n, k)-tournament.

Proposed by Carlos di Fiore, Argentina

6 A holey triangle is an upward equilateral triangle of side length n with n upward unit triangular holes cut out. A diamond is a $60^{\circ} - 120^{\circ}$ unit rhombus. Prove that a holey triangle T can be tiled with diamonds if and only if the following condition holds: Every upward equilateral triangle of side length k in T contains at most k holes, for $1 \le k \le n$.

Proposed by Federico Ardila, Colombia

7 Consider a convex polyhedron without parallel edges and without an edge parallel to any face other than the two faces adjacent to it. Call a pair of points of the polyhedron *antipodal* if there exist two parallel planes passing through these points and such that the polyhedron is contained between these planes. Let A be the number of antipodal pairs of vertices, and let B be the number of antipodal pairs of midpoint edges. Determine the difference A - B in terms of the numbers of vertices, edges, and faces.

Proposed by Kei Irei, Japan

Geometry 1 Let ABC be triangle with incenter I. A point P in the interior of the triangle satisfies $\angle PBA + \angle PCA = \angle PBC + \angle PCB.$ Show that $AP \ge AI$, and that equality holds if and only if P = I. 2 Let ABCD be a trapezoid with parallel sides AB > CD. Points K and L lie on the line seqments AB and CD, respectively, so that AK/KB = DL/LC. Suppose that there are points P and Q on the line segment KL satisfying $\angle APB = \angle BCD$ and $\angle CQD = \angle ABC.$ Prove that the points P, Q, B and C are concyclic. Proposed by Vyacheslev Yasinskiy, Ukraine 3 Let *ABCDE* be a convex pentagon such that $\angle BAC = \angle CAD = \angle DAE$ $\angle ABC = \angle ACD = \angle ADE.$ and The diagonals *BD* and *CE* meet at *P*. Prove that the line *AP* bisects the side *CD*. Proposed by Zuming Feng, USA 4 A point D is chosen on the side AC of a triangle ABC with $\angle C < \angle A < 90^{\circ}$ in such a way that BD = BA. The incircle of ABC is tangent to AB and AC at points K and L, respectively. Let J be the incenter of triangle BCD. Prove that the line KL intersects the line segment AJ at its midpoint. 5 In triangle ABC, let J be the center of the excircle tangent to side BC at A_1 and to the extensions of the sides AC and AB at B_1 and C_1 respectively. Suppose that the lines A_1B_1 and AB are perpendicular and intersect at D. Let E be the foot of the perpendicular from C_1 to line *DJ*. Determine the angles $\angle BEA_1$ and $\angle AEB_1$. Proposed by Dimitris Kontogiannis, Greece 6 Circles w_1 and w_2 with centres O_1 and O_2 are externally tangent at point D and internally tangent to a circle w at points E and F respectively. Line t is the common tangent of w_1 and w_2 at D. Let AB be the diameter of w perpendicular to t, so that A, E, O_1 are on the same side

of t. Prove that lines AO_1 , BO_2 , EF and t are concurrent.

7 In a triangle ABC, let M_a , M_b , M_c be the midpoints of the sides BC, CA, AB, respectively, and T_a , T_b , T_c be the midpoints of the arcs BC, CA, AB of the circumcircle of ABC, not containing the vertices A, B, C, respectively. For $i \in \{a, b, c\}$, let w_i be the circle with M_iT_i as diameter. Let p_i be the common external common tangent to the circles w_j and w_k (for all $\{i, j, k\} = \{a, b, c\}$) such that w_i lies on the opposite side of p_i than w_j and w_k do.

Prove that the lines p_a , p_b , p_c form a triangle similar to ABC and find the ratio of similitude.

Proposed by Tomas Jurik, Slovakia

8 Let *ABCD* be a convex quadrilateral. A circle passing through the points *A* and *D* and a circle passing through the points *B* and *C* are externally tangent at a point *P* inside the quadrilateral. Suppose that

 $\angle PAB + \angle PDC \le 90^{\circ}$ and $\angle PBA + \angle PCD \le 90^{\circ}$.

Prove that $AB + CD \ge BC + AD$.

Proposed by Waldemar Pompe, Poland

- **9** Points A_1 , B_1 , C_1 are chosen on the sides BC, CA, AB of a triangle ABC respectively. The circumcircles of triangles AB_1C_1 , BC_1A_1 , CA_1B_1 intersect the circumcircle of triangle ABC again at points A_2 , B_2 , C_2 respectively ($A_2 \neq A, B_2 \neq B, C_2 \neq C$). Points A_3 , B_3 , C_3 are symmetric to A_1 , B_1 , C_1 with respect to the midpoints of the sides BC, CA, AB respectively. Prove that the triangles $A_2B_2C_2$ and $A_3B_3C_3$ are similar.
- **10** Assign to each side *b* of a convex polygon *P* the maximum area of a triangle that has *b* as a side and is contained in *P*. Show that the sum of the areas assigned to the sides of *P* is at least twice the area of *P*.
- Number Theory
- **1** Determine all pairs (x, y) of integers such that

$$1 + 2^x + 2^{2x+1} = y^2.$$

2 For $x \in (0,1)$ let $y \in (0,1)$ be the number whose *n*-th digit after the decimal point is the 2^n -th digit after the decimal point of *x*. Show that if *x* is rational then so is *y*.

Proposed by J.P. Grossman, Canada

3 We define a sequence (a_1, a_2, a_3, \ldots) by

 $a_n = \frac{1}{n} \left(\left\lfloor \frac{n}{1} \right\rfloor + \left\lfloor \frac{n}{2} \right\rfloor + \dots + \left\lfloor \frac{n}{n} \right\rfloor \right),$

where |x| denotes the integer part of x.

a) Prove that $a_{n+1} > a_n$ infinitely often. **b)** Prove that $a_{n+1} < a_n$ infinitely often.

Proposed by Johan Meyer, South Africa

- **4** Let P(x) be a polynomial of degree n > 1 with integer coefficients and let k be a positive integer. Consider the polynomial $Q(x) = P(P(\ldots P(P(x)) \ldots))$, where P occurs k times. Prove that there are at most n integers t such that Q(t) = t.
- **5** Find all integer solutions of the equation

$$\frac{x^7 - 1}{x - 1} = y^5 - 1.$$

6 Let a > b > 1 be relatively prime positive integers. Define the weight of an integer c, denoted by w(c) to be the minimal possible value of |x| + |y| taken over all pairs of integers x and y such that

$$ax + by = c.$$

An integer *c* is called a *local champion* if $w(c) \ge w(c \pm a)$ and $w(c) \ge w(c \pm b)$.

Find all local champions and determine their number.

Proposed by Zoran Sunic, USA

7 For all positive integers *n*, show that there exists a positive integer *m* such that *n* divides $2^m + m$.

Proposed by Juhan Aru, Estonia

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.