AoPS Community

IMO Shortlist 2006

www.artofproblemsolving.com/community/c3957
by mattilgale, malinger, pohoatza, Davron, ZetaX, iura, Igor, Valentin Vornicu, e.lopes, cancer

- Algebra

1 A sequence of real numbers $a_{0}, a_{1}, a_{2}, \ldots$ is defined by the formula

$$
a_{i+1}=\left\lfloor a_{i}\right\rfloor \cdot\left\langle a_{i}\right\rangle \quad \text { for } \quad i \geq 0 ;
$$

here a_{0} is an arbitrary real number, $\left\lfloor a_{i}\right\rfloor$ denotes the greatest integer not exceeding a_{i}, and $\left\langle a_{i}\right\rangle=a_{i}-\left\lfloor a_{i}\right\rfloor$. Prove that $a_{i}=a_{i+2}$ for i sufficiently large.

Proposed by Harmel Nestra, Estionia

2 The sequence of real numbers $a_{0}, a_{1}, a_{2}, \ldots$ is defined recursively by

$$
a_{0}=-1, \quad \sum_{k=0}^{n} \frac{a_{n-k}}{k+1}=0 \quad \text { for } \quad n \geq 1 .
$$

Show that $a_{n}>0$ for all $n \geq 1$.
Proposed by Mariusz Skalba, Poland
3 The sequence $c_{0}, c_{1}, \ldots, c_{n}, \ldots$ is defined by $c_{0}=1, c_{1}=0$, and $c_{n+2}=c_{n+1}+c_{n}$ for $n \geq 0$. Consider the set S of ordered pairs (x, y) for which there is a finite set J of positive integers such that $x=\sum_{j \in J} c_{j}, y=\sum_{j \in J} c_{j-1}$. Prove that there exist real numbers α, β, and M with the following property: An ordered pair of nonnegative integers (x, y) satisfies the inequality

$$
m<\alpha x+\beta y<M
$$

if and only if $(x, y) \in S$.
Remark: A sum over the elements of the empty set is assumed to be 0 .
4 Prove the inequality:

$$
\sum_{i<j} \frac{a_{i} a_{j}}{a_{i}+a_{j}} \leq \frac{n}{2\left(a_{1}+a_{2}+\cdots+a_{n}\right)} \cdot \sum_{i<j} a_{i} a_{j}
$$

for positive reals $a_{1}, a_{2}, \ldots, a_{n}$.
Proposed by Dusan Dukic, Serbia

5 If a, b, c are the sides of a triangle, prove that

$$
\frac{\sqrt{b+c-a}}{\sqrt{b}+\sqrt{c}-\sqrt{a}}+\frac{\sqrt{c+a-b}}{\sqrt{c}+\sqrt{a}-\sqrt{b}}+\frac{\sqrt{a+b-c}}{\sqrt{a}+\sqrt{b}-\sqrt{c}} \leq 3
$$

Proposed by Hojoo Lee, Korea
6 Determine the least real number M such that the inequality

$$
\left|a b\left(a^{2}-b^{2}\right)+b c\left(b^{2}-c^{2}\right)+c a\left(c^{2}-a^{2}\right)\right| \leq M\left(a^{2}+b^{2}+c^{2}\right)^{2}
$$

holds for all real numbers a, b and c.

- Combinatorics

1 We have $n \geq 2$ lamps L_{1}, \ldots, L_{n} in a row, each of them being either on or off. Every second we simultaneously modify the state of each lamp as follows: if the lamp L_{i} and its neighbours (only one neighbour for $i=1$ or $i=n$, two neighbours for other i) are in the same state, then L_{i} is switched off; otherwise, L_{i} is switched on.
Initially all the lamps are off except the leftmost one which is on.
(a) Prove that there are infinitely many integers n for which all the lamps will eventually be off.
(b) Prove that there are infinitely many integers n for which the lamps will never be all off.

2 Let P be a regular 2006-gon. A diagonal is called good if its endpoints divide the boundary of P into two parts, each composed of an odd number of sides of P. The sides of P are also called good.
Suppose P has been dissected into triangles by 2003 diagonals, no two of which have a common point in the interior of P. Find the maximum number of isosceles triangles having two good sides that could appear in such a configuration.

3 Let S be a finite set of points in the plane such that no three of them are on a line. For each convex polygon P whose vertices are in S, let $a(P)$ be the number of vertices of P, and let $b(P)$ be the number of points of S which are outside P. A line segment, a point, and the empty set are considered as convex polygons of 2,1 , and 0 vertices respectively. Prove that for every real number x

$$
\sum_{P} x^{a(P)}(1-x)^{b(P)}=1,
$$

where the sum is taken over all convex polygons with vertices in S.

Alternative formulation:

Let M be a finite point set in the plane and no three points are collinear. A subset A of M will be called round if its elements is the set of vertices of a convex A-gon $V(A)$. For each round subset let $r(A)$ be the number of points from M which are exterior from the convex A-gon

2006 IMO Shortlist

$V(A)$. Subsets with 0,1 and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset A of M construct the polynomial

$$
P_{A}(x)=x^{|A|}(1-x)^{r(A)} .
$$

Show that the sum of polynomials for all round subsets is exactly the polynomial $P(x)=1$.
Proposed by Federico Ardila, Colombia
4 A cake has the form of an $n \mathbf{x} n$ square composed of n^{2} unit squares. Strawberries lie on some of the unit squares so that each row or column contains exactly one strawberry; call this arrangement \mathcal{A}.
Let \mathcal{B} be another such arrangement. Suppose that every grid rectangle with one vertex at the top left corner of the cake contains no fewer strawberries of arrangement \mathcal{B} than of arrangement \mathcal{A}. Prove that arrangement \mathcal{B} can be obtained from \mathcal{A} by performing a number of switches, defined as follows:

A switch consists in selecting a grid rectangle with only two strawberries, situated at its top right corner and bottom left corner, and moving these two strawberries to the other two corners of that rectangle.
$5 \quad \mathrm{An}(n, k)$ - tournament is a contest with n players held in k rounds such that:
(i) Each player plays in each round, and every two players meet at most once. (ii) If player A meets player B in round i, player C meets player D in round i, and player A meets player C in round j, then player B meets player D in round j.

Determine all pairs (n, k) for which there exists an (n, k) - tournament.
Proposed by Carlos di Fiore, Argentina
6 A holey triangle is an upward equilateral triangle of side length n with n upward unit triangular holes cut out. A diamond is a $60^{\circ}-120^{\circ}$ unit rhombus.
Prove that a holey triangle T can be tiled with diamonds if and only if the following condition holds: Every upward equilateral triangle of side length k in T contains at most k holes, for $1 \leq k \leq n$.

Proposed by Federico Ardila, Colombia
7 Consider a convex polyhedron without parallel edges and without an edge parallel to any face other than the two faces adjacent to it. Call a pair of points of the polyhedron antipodal if there exist two parallel planes passing through these points and such that the polyhedron is contained between these planes. Let A be the number of antipodal pairs of vertices, and let B be the number of antipodal pairs of midpoint edges. Determine the difference $A-B$ in terms of the numbers of vertices, edges, and faces.

Proposed by Kei Irei, Japan

- Geometry

1 Let $A B C$ be triangle with incenter I. A point P in the interior of the triangle satisfies

$$
\angle P B A+\angle P C A=\angle P B C+\angle P C B .
$$

Show that $A P \geq A I$, and that equality holds if and only if $P=I$.
2 Let $A B C D$ be a trapezoid with parallel sides $A B>C D$. Points K and L lie on the line segments $A B$ and $C D$, respectively, so that $A K / K B=D L / L C$. Suppose that there are points P and Q on the line segment $K L$ satisfying

$$
\angle A P B=\angle B C D \quad \text { and } \quad \angle C Q D=\angle A B C
$$

Prove that the points P, Q, B and C are concyclic.
Proposed by Vyacheslev Yasinskiy, Ukraine
3 Let $A B C D E$ be a convex pentagon such that

$$
\angle B A C=\angle C A D=\angle D A E \quad \text { and } \quad \angle A B C=\angle A C D=\angle A D E .
$$

The diagonals $B D$ and $C E$ meet at P. Prove that the line $A P$ bisects the side $C D$.
Proposed by Zuming Feng, USA
4 A point D is chosen on the side $A C$ of a triangle $A B C$ with $\angle C<\angle A<90^{\circ}$ in such a way that $B D=B A$. The incircle of $A B C$ is tangent to $A B$ and $A C$ at points K and L, respectively. Let J be the incenter of triangle $B C D$. Prove that the line $K L$ intersects the line segment $A J$ at its midpoint.

5 In triangle $A B C$, let J be the center of the excircle tangent to side $B C$ at A_{1} and to the extensions of the sides $A C$ and $A B$ at B_{1} and C_{1} respectively. Suppose that the lines $A_{1} B_{1}$ and $A B$ are perpendicular and intersect at D. Let E be the foot of the perpendicular from C_{1} to line $D J$. Determine the angles $\angle B E A_{1}$ and $\angle A E B_{1}$.
Proposed by Dimitris Kontogiannis, Greece
$6 \quad$ Circles w_{1} and w_{2} with centres O_{1} and O_{2} are externally tangent at point D and internally tangent to a circle w at points E and F respectively. Line t is the common tangent of w_{1} and w_{2} at D. Let $A B$ be the diameter of w perpendicular to t, so that A, E, O_{1} are on the same side of t. Prove that lines $A O_{1}, B O_{2}, E F$ and t are concurrent.

7 In a triangle $A B C$, let M_{a}, M_{b}, M_{c} be the midpoints of the sides $B C, C A, A B$, respectively, and T_{a}, T_{b}, T_{c} be the midpoints of the arcs $B C, C A, A B$ of the circumcircle of $A B C$, not containing the vertices A, B, C, respectively. For $i \in\{a, b, c\}$, let w_{i} be the circle with $M_{i} T_{i}$ as diameter. Let p_{i} be the common external common tangent to the circles w_{j} and w_{k} (for all $\{i, j, k\}=\{a, b, c\}$) such that w_{i} lies on the opposite side of p_{i} than w_{j} and w_{k} do.
Prove that the lines p_{a}, p_{b}, p_{c} form a triangle similar to $A B C$ and find the ratio of similitude.
Proposed by Tomas Jurik, Slovakia
8 Let $A B C D$ be a convex quadrilateral. A circle passing through the points A and D and a circle passing through the points B and C are externally tangent at a point P inside the quadrilateral. Suppose that

$$
\angle P A B+\angle P D C \leq 90^{\circ} \quad \text { and } \quad \angle P B A+\angle P C D \leq 90^{\circ} .
$$

Prove that $A B+C D \geq B C+A D$.
Proposed by Waldemar Pompe, Poland
9 Points A_{1}, B_{1}, C_{1} are chosen on the sides $B C, C A, A B$ of a triangle $A B C$ respectively. The circumcircles of triangles $A B_{1} C_{1}, B C_{1} A_{1}, C A_{1} B_{1}$ intersect the circumcircle of triangle $A B C$ again at points A_{2}, B_{2}, C_{2} respectively $\left(A_{2} \neq A, B_{2} \neq B, C_{2} \neq C\right)$. Points A_{3}, B_{3}, C_{3} are symmetric to A_{1}, B_{1}, C_{1} with respect to the midpoints of the sides $B C, C A, A B$ respectively. Prove that the triangles $A_{2} B_{2} C_{2}$ and $A_{3} B_{3} C_{3}$ are similar.

10 Assign to each side b of a convex polygon P the maximum area of a triangle that has b as a side and is contained in P. Show that the sum of the areas assigned to the sides of P is at least twice the area of P.

- Number Theory

1 Determine all pairs (x, y) of integers such that

$$
1+2^{x}+2^{2 x+1}=y^{2} .
$$

2 For $x \in(0,1)$ let $y \in(0,1)$ be the number whose n-th digit after the decimal point is the 2^{n}-th digit after the decimal point of x. Show that if x is rational then so is y.

Proposed by J.P. Grossman, Canada
3 We define a sequence $\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ by

$$
a_{n}=\frac{1}{n}\left(\left\lfloor\frac{n}{1}\right\rfloor+\left\lfloor\frac{n}{2}\right\rfloor+\cdots+\left\lfloor\frac{n}{n}\right\rfloor\right),
$$

where $\lfloor x\rfloor$ denotes the integer part of x.
a) Prove that $a_{n+1}>a_{n}$ infinitely often.
b) Prove that $a_{n+1}<a_{n}$ infinitely often.

Proposed by Johan Meyer, South Africa
4 Let $P(x)$ be a polynomial of degree $n>1$ with integer coefficients and let k be a positive integer. Consider the polynomial $Q(x)=P(P(\ldots P(P(x)) \ldots))$, where P occurs k times. Prove that there are at most n integers t such that $Q(t)=t$.

5 Find all integer solutions of the equation

$$
\frac{x^{7}-1}{x-1}=y^{5}-1
$$

6 Let $a>b>1$ be relatively prime positive integers. Define the weight of an integer c, denoted by $w(c)$ to be the minimal possible value of $|x|+|y|$ taken over all pairs of integers x and y such that

$$
a x+b y=c .
$$

An integer c is called a local champion if $w(c) \geq w(c \pm a)$ and $w(c) \geq w(c \pm b)$.
Find all local champions and determine their number.
Proposed by Zoran Sunic, USA
7 For all positive integers n, show that there exists a positive integer m such that n divides $2^{m}+m$.

Proposed by Juhan Aru, Estonia

