

IMO Shortlist 2007

www.artofproblemsolving.com/community/c3958

by Valentin Vornicu, orl, the.sceth, freemind, Omid Hatami, delegat, April, discredit, pohoatza, Dida Drogbier, ashwath.rabindranath

– Algebra

1 Real numbers a_1, a_2, \ldots, a_n are given. For each i, $(1 \le i \le n)$, define

$$d_i = \max\{a_j \mid 1 \le j \le i\} - \min\{a_j \mid i \le j \le n\}$$

and let $d = \max\{d_i \mid 1 \le i \le n\}$.

(a) Prove that, for any real numbers $x_1 \leq x_2 \leq \cdots \leq x_n$,

$$\max\{|x_i - a_i| \mid 1 \le i \le n\} \ge \frac{d}{2}.$$
 (*)

(b) Show that there are real numbers $x_1 \le x_2 \le \cdots \le x_n$ such that the equality holds in (*).

Author: Michael Albert, New Zealand

2 Consider those functions $f : \mathbb{N} \mapsto \mathbb{N}$ which satisfy the condition

$$f(m+n) \ge f(m) + f(f(n)) - 1$$

for all $m, n \in \mathbb{N}$. Find all possible values of f(2007).

Author: Nikolai Nikolov, Bulgaria

3 Let *n* be a positive integer, and let *x* and *y* be a positive real number such that $x^n + y^n = 1$. Prove that

$$\left(\sum_{k=1}^{n} \frac{1+x^{2k}}{1+x^{4k}}\right) \cdot \left(\sum_{k=1}^{n} \frac{1+y^{2k}}{1+y^{4k}}\right) < \frac{1}{(1-x)\cdot(1-y)}.$$

Author: Juhan Aru, Estonia

4 Find all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying f(x + f(y)) = f(x + y) + f(y) for all pairs of positive reals x and y. Here, \mathbb{R}^+ denotes the set of all positive reals.

Proposed by Paisan Nakmahachalasint, Thailand

2007 IMO Shortlist

5 Let c > 2, and let $a(1), a(2), \ldots$ be a sequence of nonnegative real numbers such that

 $a(m+n) \le 2 \cdot a(m) + 2 \cdot a(n)$ for all $m, n \ge 1$,

and $a(2^k) \leq \frac{1}{(k+1)^c}$ for all $k \geq 0$. Prove that the sequence a(n) is bounded.

Author: Vjekoslav Kova, Croatia

6 Let $a_1, a_2, \ldots, a_{100}$ be nonnegative real numbers such that $a_1^2 + a_2^2 + \ldots + a_{100}^2 = 1$. Prove that

$$a_1^2 \cdot a_2 + a_2^2 \cdot a_3 + \ldots + a_{100}^2 \cdot a_1 < \frac{12}{25}$$

Author: Marcin Kuzma, Poland

7 Let *n* be a positive integer. Consider

 $S = \{(x, y, z) \mid x, y, z \in \{0, 1, \dots, n\}, x + y + z > 0\}$

as a set of $(n+1)^3 - 1$ points in the three-dimensional space. Determine the smallest possible number of planes, the union of which contains *S* but does not include (0, 0, 0).

Author: Gerhard Wginger, Netherlands

-	Combinatorics
1	Let $n > 1$ be an integer. Find all sequences $a_1, a_2, \dots a_{n^2+n}$ satisfying the following conditions:

(a)
$$a_i \in \{0, 1\}$$
 for all $1 \le i \le n^2 + n$;

(b) $a_{i+1} + a_{i+2} + \ldots + a_{i+n} < a_{i+n+1} + a_{i+n+2} + \ldots + a_{i+2n}$ for all $0 \le i \le n^2 - n$.

Author: Dusan Dukic, Serbia

2 A rectangle *D* is partitioned in several (≥ 2) rectangles with sides parallel to those of *D*. Given that any line parallel to one of the sides of *D*, and having common points with the interior of *D*, also has common interior points with the interior of at least one rectangle of the partition; prove that there is at least one rectangle of the partition having no common points with *D*'s boundary.

Author: Kei Irie, Japan

3 Find all positive integers *n* for which the numbers in the set $S = \{1, 2, ..., n\}$ can be colored red and blue, with the following condition being satisfied: The set $S \times S \times S$ contains exactly 2007 ordered triples (x, y, z) such that:

(i) the numbers x, y, z are of the same color, and (ii) the number x + y + z is divisible by n.

Author: Gerhard Wginger, Netherlands

4 Let $A_0 = (a_1, ..., a_n)$ be a finite sequence of real numbers. For each $k \ge 0$, from the sequence $A_k = (x_1, ..., x_k)$ we construct a new sequence A_{k+1} in the following way. 1. We choose a partition $\{1, ..., n\} = I + I$ where I and I are two disjoint sets, such that the

1. We choose a partition $\{1, ..., n\} = I \cup J$, where I and J are two disjoint sets, such that the expression

$$\left|\sum_{i\in I} x_i - \sum_{j\in J} x_j\right|$$

attains the smallest value. (We allow I or J to be empty; in this case the corresponding sum is 0.) If there are several such partitions, one is chosen arbitrarily.

2. We set $A_{k+1} = (y_1, \ldots, y_n)$ where $y_i = x_i + 1$ if $i \in I$, and $y_i = x_i - 1$ if $i \in J$. Prove that for some k, the sequence A_k contains an element x such that $|x| \ge \frac{n}{2}$.

Author: Omid Hatami, Iran

5 In the Cartesian coordinate plane define the strips $S_n = \{(x, y) | n \le x < n + 1\}$, $n \in \mathbb{Z}$ and color each strip black or white. Prove that any rectangle which is not a square can be placed in the plane so that its vertices have the same color.

IMO Shortlist 2007 Problem C5 as it appears in the official booklet:

In the Cartesian coordinate plane define the strips $S_n = \{(x, y) | n \le x < n+1\}$ for every integer n. Assume each strip S_n is colored either red or blue, and let a and b be two distinct positive integers. Prove that there exists a rectangle with side length a and b such that its vertices have the same color.

(Edited by Orlando Dhring)

Author: Radu Gologan and Dan Schwarz, Romania

6 In a mathematical competition some competitors are friends. Friendship is always mutual. Call a group of competitors a *clique* if each two of them are friends. (In particular, any group of fewer than two competitiors is a clique.) The number of members of a clique is called its *size*.

Given that, in this competition, the largest size of a clique is even, prove that the competitors can be arranged into two rooms such that the largest size of a clique contained in one room is the same as the largest size of a clique contained in the other room.

Author: Vasily Astakhov, Russia

7 Let $\alpha < \frac{3-\sqrt{5}}{2}$ be a positive real number. Prove that there exist positive integers n and $p > \alpha \cdot 2^n$ for which one can select $2 \cdot p$ pairwise distinct subsets $S_1, \ldots, S_p, T_1, \ldots, T_p$ of the set $\{1, 2, \ldots, n\}$ such that $S_i \cap T_j \neq \emptyset$ for all $1 \le i, j \le p$

Author: Gerhard Wginger, Austria

8 Given is a convex polygon P with n vertices. Triangle whose vertices lie on vertices of P is called *good* if all its sides are unit length. Prove that there are at most $\frac{2n}{3}$ good triangles.

Author: Vyacheslav Yasinskiy, Ukraine

- Geometry
- 1 In triangle *ABC* the bisector of angle *BCA* intersects the circumcircle again at *R*, the perpendicular bisector of *BC* at *P*, and the perpendicular bisector of *AC* at *Q*. The midpoint of *BC* is *K* and the midpoint of *AC* is *L*. Prove that the triangles *RPK* and *RQL* have the same area.

Author: Marek Pechal, Czech Republic

2 Denote by *M* midpoint of side *BC* in an isosceles triangle $\triangle ABC$ with AC = AB. Take a point *X* on a smaller arc MA of circumcircle of triangle $\triangle ABM$. Denote by *T* point inside of angle *BMA* such that $\angle TMX = 90$ and TX = BX.

Prove that $\angle MTB - \angle CTM$ does not depend on choice of *X*.

Author: Farzan Barekat, Canada

3 The diagonals of a trapezoid ABCD intersect at point P. Point Q lies between the parallel lines BC and AD such that $\angle AQD = \angle CQB$, and line CD separates points P and Q. Prove that $\angle BQP = \angle DAQ$.

Author: Vyacheslav Yasinskiy, Ukraine

4 Consider five points *A*, *B*, *C*, *D* and *E* such that *ABCD* is a parallelogram and *BCED* is a cyclic quadrilateral. Let ℓ be a line passing through *A*. Suppose that ℓ intersects the interior of the segment *DC* at *F* and intersects line *BC* at *G*. Suppose also that EF = EG = EC. Prove that ℓ is the bisector of angle *DAB*.

Author: Charles Leytem, Luxembourg

5 Let *ABC* be a fixed triangle, and let *A*₁, *B*₁, *C*₁ be the midpoints of sides *BC*, *CA*, *AB*, respectively. Let *P* be a variable point on the circumcircle. Let lines *PA*₁, *PB*₁, *PC*₁ meet the circumcircle again at *A'*, *B'*, *C'*, respectively. Assume that the points *A*, *B*, *C*, *A'*, *B'*, *C'* are distinct, and lines *AA'*, *BB'*, *CC'* form a triangle. Prove that the area of this triangle does not depend on *P*.

Author: Christopher Bradley, United Kingdom

6 Determine the smallest positive real number k with the following property. Let ABCD be a convex quadrilateral, and let points A_1 , B_1 , C_1 , and D_1 lie on sides AB, BC, CD, and DA, respectively. Consider the areas of triangles AA_1D_1 , BB_1A_1 , CC_1B_1 and DD_1C_1 ; let S be the sum of the two smallest ones, and let S_1 be the area of quadrilateral $A_1B_1C_1D_1$. Then we always have $kS_1 \ge S$.

Author: Zuming Feng and Oleg Golberg, USA

7 Given an acute triangle ABC with $\angle B > \angle C$. Point *I* is the incenter, and *R* the circumradius. Point *D* is the foot of the altitude from vertex *A*. Point *K* lies on line *AD* such that AK = 2R, and *D* separates *A* and *K*. Lines *DI* and *KI* meet sides *AC* and *BC* at *E*, *F* respectively. Let IE = IF.

Prove that $\angle B \leq 3 \angle C$.

Author: Davoud Vakili, Iran

8 Point *P* lies on side *AB* of a convex quadrilateral *ABCD*. Let ω be the incircle of triangle *CPD*, and let *I* be its incenter. Suppose that ω is tangent to the incircles of triangles *APD* and *BPC* at points *K* and *L*, respectively. Let lines *AC* and *BD* meet at *E*, and let lines *AK* and *BL* meet at *F*. Prove that points *E*, *I*, and *F* are collinear.

Author: Waldemar Pompe, Poland

- Number Theory
- 1 Find all pairs of natural numbers (a, b) such that $7^a 3^b$ divides $a^4 + b^2$.

Author: Stephan Wagner, Austria

2 Let b, n > 1 be integers. Suppose that for each k > 1 there exists an integer a_k such that $b - a_k^n$ is divisible by k. Prove that $b = A^n$ for some integer A.

Author: Dan Brown, Canada

3 Let *X* be a set of 10,000 integers, none of them is divisible by 47. Prove that there exists a 2007-element subset *Y* of *X* such that a-b+c-d+e is not divisible by 47 for any $a, b, c, d, e \in Y$.

Author: Gerhard Wginger, Netherlands

4 For every integer $k \ge 2$, prove that 2^{3k} divides the number

$$\binom{2^{k+1}}{2^k} - \binom{2^k}{2^{k-1}}$$

but 2^{3k+1} does not.

Author: Waldemar Pompe, Poland

5 Find all surjective functions $f : \mathbb{N} \to \mathbb{N}$ such that for every $m, n \in \mathbb{N}$ and every prime p, the number f(m+n) is divisible by p if and only if f(m) + f(n) is divisible by p.

Author: Mohsen Jamaali and Nima Ahmadi Pour Anari, Iran

6 Let *k* be a positive integer. Prove that the number $(4 \cdot k^2 - 1)^2$ has a positive divisor of the form 8kn - 1 if and only if *k* is even.

Actual IMO 2007 Problem, posed as question 5 in the contest, which was used as a lemma in the official solutions for problem N6 as shown above. (http://www.mathlinks.ro/viewtopic.php?p=89465\#894656)

Author: Kevin Buzzard and Edward Crane, United Kingdom

7 For a prime p and a given integer n let $\nu_p(n)$ denote the exponent of p in the prime factorisation of n!. Given $d \in \mathbb{N}$ and $\{p_1, p_2, \ldots, p_k\}$ a set of k primes, show that there are infinitely many positive integers n such that $d \mid \nu_{p_i}(n)$ for all $1 \le i \le k$.

Author: Tejaswi Navilarekkallu, India

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.