## AoPS Community

## Mathematical Olympiad 2016

www.artofproblemsolving.com/community/c395967
by cjquines0

- $\quad$ Time: 4.5 hours. Each problem is worth 8 points.

1 The operations below can be applied on any expression of the form $a x^{2}+b x+c$.
(I) If $c \neq 0$, replace $a$ by $4 a-\frac{3}{c}$ and $c$ by $\frac{c}{4}$.
(II) If $a \neq 0$, replace $a$ by $-\frac{a}{2}$ and $c$ by $-2 c+\frac{3}{a}$.
(III ${ }_{t}$ ) Replace $x$ by $x-t$, where $t$ is an integer. (Different values of $t$ can be used.)
Is it possible to transform $x^{2}-x-6$ into each of the following by applying some sequence of the above operations?
(a) $5 x^{2}+5 x-1$
(b) $x^{2}+6 x+2$

2 Prove that the arithmetic sequence $5,11,17,23,29, \ldots$ contains infinitely many primes.
3 Let $n$ be any positive integer. Prove that

$$
\sum_{i=1}^{n} \frac{1}{\left(i^{2}+i\right)^{3 / 4}}>2-\frac{2}{\sqrt{n+1}}
$$

4 Two players, $A$ (first player) and $B$, take alternate turns in playing a game using 2016 chips as follows: [i]the player whose turn it is, must remove $s$ chips from the remaining pile of chips, where $s \in\{2,4,5\}[/ \mathrm{i}]$. No one can skip a turn. The player who at some point is unable to make a move (cannot remove chips from the pile) loses the game. Who among the two players can force a win on this game?

5 Pentagon $A B C D E$ is inscribed in a circle. Its diagonals $A C$ and $B D$ intersect at $F$. The bisectors of $\angle B A C$ and $\angle C D B$ intersect at $G$. Let $A G$ intersect $B D$ at $H$, let $D G$ intersect $A C$ at $I$, and let $E G$ intersect $A D$ at $J$. If $F H G I$ is cyclic and

$$
J A \cdot F C \cdot G H=J D \cdot F B \cdot G I,
$$

prove that $G, F$ and $E$ are collinear.

