Art of Problem Solving

AoPS Community

2016 Kosovo National Mathematical Olympiad

Kosovo National Mathematical Olympiad 2016

www.artofproblemsolving.com/community/c395968
by cjquines 0 , fia, dangerousliri

- \quad Grade 9

1 If $a, b \neq 0$ are real numbers such that $a^{2} b^{2}\left(a^{2} b^{2}+4\right)=2\left(a^{6}+b^{6}\right)$, then show that a, b cant be both of them rational.

2 Find all real numbers x which satisfied $|2 x+1|+|x-1|=2-x$.
3 Show that the sum $S=5+5^{2}+5^{3}++5^{2016}$ is divisible by 31
4 In a planet Papella year has 400 days with days coundting from 1-400. A holiday would be that day which is divisible by 6 . The new gonverment decide to reform a new calendar and split in 10 months with 40 day each month, and they decide that day of month which is divisible by 6 to be holiday. Show that after reform the number of holidays after one year decreased less then 10 percent.

5 It is given rectangle $A B C D$ with length $|A B|=15 \mathrm{~cm}$ and with length of altitude $|B E|=12 \mathrm{~cm}$ where $B C$ is altitude of triangle $A B C$. Find perimeter and area of rectangle $A B C D$.

- \quad Grade 10

1 Find all triples (x, y, z) of integers such that satisfied:
$x^{2}+y^{2}+z^{2}+x y+y z+z x=6$
2 Show that the number $2017^{2016}-2016^{2017}$ is divisible by 5 .
3 The distance from A to B is 408 km . From A in direction of B move motorcyclist, and from B in direction of A move a bicyclist. If a motorcyclist start to move 2 hours earlier then byciclist , then they will meet 7 hours after bicyclist start to move. If a bicyclist start to move 2 hours earlier then motorcyclist, then they will meet 8 hours after after motorcyclist start to move . Find the velocity of motorcyclist and bicyclist if we now that the velocity of them was constant all the time.

4 Let be $f:(0,+\infty) \rightarrow \mathbb{R}$ monoton-decreasing .
If $f\left(2 a^{2}+a+1\right)<f\left(3 a^{2}-4 a+1\right)$ find interval of a.
5 If a, b, c are sides of right triangle with c hypothenuse then show that for every positive integer $n>2$ we have $c^{n}>a^{n}+b^{n}$.

- \quad Grade 11
$1 \quad$ Find all couples (m, n) of positive integers such that satisfied $m^{2}+1=n^{2}+2016$.
2 Evaluate the sum of all three digits number which are not divisible by 13 .
3 If α is an acute angle and $a, b \geq 0$ then show that:
$\left(a+\frac{b}{\sin \alpha}\right)\left(b+\frac{a}{\cos \alpha}\right) \geq a^{2}+b^{2}+3 a b$
4 Solve equation in real numbers $\log _{2}\left(4^{x}+4\right)=x+\log _{2}\left(2^{x+1}-3\right)$
5 In angle $\angle A O B=60^{\circ}$ are two circle which circumscribed and tangjent to each other. If we write with r and R the radius of smaller and bigger circle respectively and if $r=1$ find R.

- \quad Grade 12

1 Find all three digit numbers such that the square of that number is equal to the sum of their digits in power of 5 .

2 Sum of all coefficients of polynomial $P(x)$ is equal with 2 . Also the sum of coefficients which are at odd exponential in x^{k} are equal to sum of coefficients which are at even exponential in x^{k}. Find the residue of polynomial $P(x)$ when it is divide by $x^{2}-1$.

3 Let be a, b, c complex numbers such that $|a|=|b|=|c|=r$ then show that
$\left|\frac{a b+b c+c a}{a+b+c}\right|=r$
4 In all rectangles with same diagonal d find that one with bigger area .
5 In trapezoid $A B C D$ with $A B$ parallel to $C D$ show that:
$\frac{|A B|^{2}-|B C|^{2}+|A C|^{2}}{|C D|^{2}-|A D|^{2}+|A C|^{2}}=\frac{|A B|}{|C D|}=\frac{|A B|^{2}-|A D|^{2}+|B D|^{2}}{|C D|^{2}-|B C|^{2}+|B D|^{2}}$

