

AoPS Community

2016 Kosovo National Mathematical Olympiad

Kosovo National Mathematical	Olympiad 2016
-------------------------------------	---------------

www.artofproblemsolving.com/community/c395968 by cjquines0, fia, dangerousliri

-	Grade 9
1	If $a, b \neq 0$ are real numbers such that $a^2b^2(a^2b^2 + 4) = 2(a^6 + b^6)$, then show that a, b cant be both of them rational .
2	Find all real numbers x which satisfied $ 2x + 1 + x - 1 = 2 - x$.
3	Show that the sum $S = 5 + 5^2 + 5^3 + 5^{2016}$ is divisible by 31
4	In a planet $Papella$ year has 400 days with days coundting from $1-400$. A holiday would be that day which is divisible by 6 . The new gonverment decide to reform a new calendar and split in 10 months with 40 day each month, and they decide that day of month which is divisible by 6 to be holiday. Show that after reform the number of holidays after one year decreased less then 10 percent.
5	It is given rectangle $ABCD$ with length $ AB = 15cm$ and with length of altitude $ BE = 12cm$ where BC is altitude of triangle ABC . Find perimeter and area of rectangle $ABCD$.
_	Grade 10
1	Find all triples (x, y, z) of integers such that satisfied:
	$x^2 + y^2 + z^2 + xy + yz + zx = 6$
2	Show that the number $2017^{2016} - 2016^{2017}$ is divisible by 5 .
3	The distance from A to B is $408km$. From A in direction of B move motorcyclist, and from B in direction of A move a bicyclist. If a motorcyclist start to move 2 hours earlier then byciclist, then they will meet 7 hours after bicyclist start to move. If a bicyclist start to move 2 hours earlier then motorcyclist, then they will meet 8 hours after after motorcyclist start to move. Find the velocity of motorcyclist and bicyclist if we now that the velocity of them was constant all the time.
4	Let be $f:(0,+\infty) o \mathbb{R}$ monoton-decreasing .
	If $f(2a^2 + a + 1) < f(3a^2 - 4a + 1)$ find interval of a .
5	If a, b, c are sides of right triangle with c hypothenuse then show that for every positive integer $n > 2$ we have $c^n > a^n + b^n$.

-	Grade 11
1	Find all couples (m, n) of positive integers such that satisfied $m^2 + 1 = n^2 + 2016$.
2	Evaluate the sum of all three digits number which are not divisible by 13 .
3	If α is an acute angle and $a, b \ge 0$ then show that:
	$\left(a + \frac{b}{\sin \alpha}\right)\left(b + \frac{a}{\cos \alpha}\right) \ge a^2 + b^2 + 3ab$
4	Solve equation in real numbers $\log_2(4^x + 4) = x + \log_2(2^{x+1} - 3)$
5	In angle $\angle AOB = 60^{\circ}$ are two circle which circumscribed and tangjent to each other . If we write with r and R the radius of smaller and bigger circle respectively and if $r = 1$ find R .
-	Grade 12
1	Find all three digit numbers such that the square of that number is equal to the sum of their digits in power of 5 .
2	Sum of all coefficients of polynomial $P(x)$ is equal with 2 . Also the sum of coefficients which are at odd exponential in x^k are equal to sum of coefficients which are at even exponential in x^k . Find the residue of polynomial $P(x)$ when it is divide by $x^2 - 1$.
3	Let be a, b, c complex numbers such that $ a = b = c = r$ then show that
	$\left \frac{ab+bc+ca}{a+b+c}\right = r$
4	In all rectangles with same diagonal d find that one with bigger area .
5	In trapezoid ABCD with AB parallel to CD show that :
	$\frac{ AB ^2 - BC ^2 + AC ^2}{ CD ^2 - AD ^2 + AC ^2} = \frac{ AB }{ CD } = \frac{ AB ^2 - AD ^2 + BD ^2}{ CD ^2 - BC ^2 + BD ^2}$

AoPS Online 🔯 AoPS Academy 🔯 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.