

AoPS Community

Albania National Olympiad 2011

www.artofproblemsolving.com/community/c3971 by ridgers

1 (a) Find the minimal distance between the points of the graph of the function $y = \ln x$ from the line y = x.

(b) Find the minimal distance between two points, one of the point is in the graph of the function $y = e^x$ and the other point in the graph of the function y = lnx.

- **2** Find all the values that can take the last digit of a "perfect" even number. (The natural number n is called "perfect" if the sum of all its natural divisors is equal twice the number itself.For example: the number 6 is perfect, because $1 + 2 + 3 + 6 = 2 \cdot 6$).
- **3** In a convex quadrilateral ABCD, $\angle ABC$ and $\angle BCD$ are $\ge 120^{\circ}$. Prove that $|AC| + |BD| \ge |AB| + |BC| + |CD|$. (With |XY| we understand the length of the segment XY).
- 4 The sequence (a_n) is defined by $a_1 = 1$ and $a_n = n(a_1 + a_2 + \cdots + a_{n-1})$, $\forall n > 1$.

(a) Prove that for every even n, a_n is divisible by n!.

(b) Find all odd numbers n for the which a_n is divisible by n!.

- 5 The triangle ABC acute with gravity center M is such that $\angle AMB = 2\angle ACB$. Prove that: (a) $AB^4 = AC^4 + BC^4 - AC^2 \cdot BC^2$,
 - **(b)** $\angle ACB \ge 60^{\circ}$.

Art of Problem Solving is an ACS WASC Accredited School.