AoPS Community

Albania National Olympiad 2011

www.artofproblemsolving.com/community/c3971
by ridgers

1 (a) Find the minimal distance between the points of the graph of the function $y=\ln x$ from the line $y=x$.
(b) Find the minimal distance between two points, one of the point is in the graph of the function $y=e^{x}$ and the other point in the graph of the function $y=\ln x$.

2 Find all the values that can take the last digit of a "perfect" even number. (The natural number n is called "perfect" if the sum of all its natural divisors is equal twice the number itself.For example: the number 6 is perfect ,because $1+2+3+6=2 \cdot 6$).

3 In a convex quadrilateral $A B C D, \angle A B C$ and $\angle B C D$ are $\geq 120^{\circ}$. Prove that $|A C|+|B D| \geq$ $|A B|+|B C|+|C D|$. (With $|X Y|$ we understand the length of the segment $X Y$).

4 The sequence $\left(a_{n}\right)$ is defined by $a_{1}=1$ and $a_{n}=n\left(a_{1}+a_{2}+\cdots+a_{n-1}\right), \forall n>1$.
(a) Prove that for every even n, a_{n} is divisible by n !.
(b) Find all odd numbers n for the which a_{n} is divisible by n !.

5 The triangle $A B C$ acute with gravity center M is such that $\angle A M B=2 \angle A C B$. Prove that:
(a) $A B^{4}=A C^{4}+B C^{4}-A C^{2} \cdot B C^{2}$,
(b) $\angle A C B \geq 60^{\circ}$.

