AoPS Community

USAJMO 2010

www.artofproblemsolving.com/community/c3973
by tenniskidperson3, BarbieRocks, inquisitivity, rrusczyk

Day 1 April 27th

1 A permutation of the set of positive integers $[n]=\{1,2, \ldots, n\}$ is a sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that each element of $[n]$ appears precisely one time as a term of the sequence. For example, $(3,5,1,2,4)$ is a permutation of [5]. Let $P(n)$ be the number of permutations of $[n]$ for which $k a_{k}$ is a perfect square for all $1 \leq k \leq n$. Find with proof the smallest n such that $P(n)$ is a multiple of 2010.

2 Let $n>1$ be an integer. Find, with proof, all sequences $x_{1}, x_{2}, \ldots, x_{n-1}$ of positive integers with the following three properties:
(a). $x_{1}<x_{2}<\cdots<x_{n-1}$;
(b). $x_{i}+x_{n-i}=2 n$ for all $i=1,2, \ldots, n-1$;
(c). given any two indices i and j (not necessarily distinct) for which $x_{i}+x_{j}<2 n$, there is an index k such that $x_{i}+x_{j}=x_{k}$.

3 Let $A X Y Z B$ be a convex pentagon inscribed in a semicircle of diameter $A B$. Denote by P, Q, R, S the feet of the perpendiculars from Y onto lines $A X, B X, A Z, B Z$, respectively. Prove that the acute angle formed by lines $P Q$ and $R S$ is half the size of $\angle X O Z$, where O is the midpoint of segment $A B$.

Day 2 April 28th
4 A triangle is called a parabolic triangle if its vertices lie on a parabola $y=x^{2}$. Prove that for every nonnegative integer n, there is an odd number m and a parabolic triangle with vertices at three distinct points with integer coordinates with area $\left(2^{n} m\right)^{2}$.

5 Two permutations $a_{1}, a_{2}, \ldots, a_{2010}$ and $b_{1}, b_{2}, \ldots, b_{2010}$ of the numbers $1,2, \ldots, 2010$ are said to intersect if $a_{k}=b_{k}$ for some value of k in the range $1 \leq k \leq 2010$. Show that there exist 1006 permutations of the numbers $1,2, \ldots, 2010$ such that any other such permutation is guaranteed to intersect at least one of these 1006 permutations.

6 Let $A B C$ be a triangle with $\angle A=90^{\circ}$. Points D and E lie on sides $A C$ and $A B$, respectively, such that $\angle A B D=\angle D B C$ and $\angle A C E=\angle E C B$. Segments $B D$ and $C E$ meet at I. Determine whether or not it is possible for segments $A B, A C, B I, I D, C I, I E$ to all have integer lengths.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

