

AoPS Community

2010 USAJMO

USAJMO 2010

www.artofproblemsolving.com/community/c3973

by tenniskidperson3, BarbieRocks, inquisitivity, rrusczyk

Day 1 April 27th

- 1 A permutation of the set of positive integers $[n] = \{1, 2, ..., n\}$ is a sequence $(a_1, a_2, ..., a_n)$ such that each element of [n] appears precisely one time as a term of the sequence. For example, (3, 5, 1, 2, 4) is a permutation of [5]. Let P(n) be the number of permutations of [n] for which ka_k is a perfect square for all $1 \le k \le n$. Find with proof the smallest n such that P(n) is a multiple of 2010.
- **2** Let n > 1 be an integer. Find, with proof, all sequences $x_1, x_2, \ldots, x_{n-1}$ of positive integers with the following three properties:

(a). $x_1 < x_2 < \cdots < x_{n-1}$;

- (b). $x_i + x_{n-i} = 2n$ for all i = 1, 2, ..., n-1;
- (c). given any two indices *i* and *j* (not necessarily distinct) for which $x_i + x_j < 2n$, there is an index *k* such that $x_i + x_j = x_k$.
- **3** Let AXYZB be a convex pentagon inscribed in a semicircle of diameter AB. Denote by P, Q, R, S the feet of the perpendiculars from Y onto lines AX, BX, AZ, BZ, respectively. Prove that the acute angle formed by lines PQ and RS is half the size of $\angle XOZ$, where O is the midpoint of segment AB.

Day 2 April 28th

- **4** A triangle is called a parabolic triangle if its vertices lie on a parabola $y = x^2$. Prove that for every nonnegative integer *n*, there is an odd number *m* and a parabolic triangle with vertices at three distinct points with integer coordinates with area $(2^n m)^2$.
- **5** Two permutations $a_1, a_2, \ldots, a_{2010}$ and $b_1, b_2, \ldots, b_{2010}$ of the numbers $1, 2, \ldots, 2010$ are said to *intersect* if $a_k = b_k$ for some value of k in the range $1 \le k \le 2010$. Show that there exist 1006 permutations of the numbers $1, 2, \ldots, 2010$ such that any other such permutation is guaranteed to intersect at least one of these 1006 permutations.
- **6** Let ABC be a triangle with $\angle A = 90^{\circ}$. Points D and E lie on sides AC and AB, respectively, such that $\angle ABD = \angle DBC$ and $\angle ACE = \angle ECB$. Segments BD and CE meet at I. Determine whether or not it is possible for segments AB, AC, BI, ID, CI, IE to all have integer lengths.

 https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

2010 USAJMO

Act of Problem Solving is an ACS WASC Accredited School.