2012 USAJMO



## **AoPS Community**

#### USAJMO 2012

www.artofproblemsolving.com/community/c3975 by BOGTRO, tc1729, rrusczyk

### Day 1 April 24th

- **1** Given a triangle *ABC*, let *P* and *Q* be points on segments  $\overline{AB}$  and  $\overline{AC}$ , respectively, such that AP = AQ. Let *S* and *R* be distinct points on segment  $\overline{BC}$  such that *S* lies between *B* and  $R, \angle BPS = \angle PRS$ , and  $\angle CQR = \angle QSR$ . Prove that *P*, *Q*, *R*, *S* are concyclic (in other words, these four points lie on a circle).
- **2** Find all integers  $n \ge 3$  such that among any n positive real numbers  $a_1, a_2, \ldots, a_n$  with  $\max(a_1, a_2, \ldots, a_n) \le n \cdot \min(a_1, a_2, \ldots, a_n)$ , there exist three that are the side lengths of an acute triangle.
- **3** Let a, b, c be positive real numbers. Prove that  $\frac{a^3+3b^3}{5a+b} + \frac{b^3+3c^3}{5b+c} + \frac{c^3+3a^3}{5c+a} \ge \frac{2}{3}(a^2+b^2+c^2)$ .

### Day 2 April 25th

- 4 Let  $\alpha$  be an irrational number with  $0 < \alpha < 1$ , and draw a circle in the plane whose circumference has length 1. Given any integer  $n \ge 3$ , define a sequence of points  $P_1, P_2, \ldots, P_n$  as follows. First select any point  $P_1$  on the circle, and for  $2 \le k \le n$  define  $P_k$  as the point on the circle for which the length of arc  $P_{k-1}P_k$  is  $\alpha$ , when travelling counterclockwise around the circle from  $P_{k-1}$  to  $P_k$ . Suppose that  $P_a$  and  $P_b$  are the nearest adjacent points on either side of  $P_n$ . Prove that  $a + b \le n$ .
- **5** For distinct positive integers a, b < 2012, define f(a, b) to be the number of integers k with  $1 \le k < 2012$  such that the remainder when ak divided by 2012 is greater than that of bk divided by 2012. Let S be the minimum value of f(a, b), where a and b range over all pairs of distinct positive integers less than 2012. Determine S.
- **6** Let *P* be a point in the plane of  $\triangle ABC$ , and  $\gamma$  a line passing through *P*. Let *A'*, *B'*, *C'* be the points where the reflections of lines *PA*, *PB*, *PC* with respect to  $\gamma$  intersect lines *BC*, *AC*, *AB* respectively. Prove that *A'*, *B'*, *C'* are collinear.
- https://data.artofproblemsolving.com/images/maa\_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

# AoPS Online 🕸 AoPS Academy 🕸 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.