AoPS Community

USAJMO 2012

www.artofproblemsolving.com/community/c3975
by BOGTRO, tc1729, rrusczyk

Day 1 April 24th

1 Given a triangle $A B C$, let P and Q be points on segments $\overline{A B}$ and $\overline{A C}$, respectively, such that $A P=A Q$. Let S and R be distinct points on segment $\overline{B C}$ such that S lies between B and $R, \angle B P S=\angle P R S$, and $\angle C Q R=\angle Q S R$. Prove that P, Q, R, S are concyclic (in other words, these four points lie on a circle).

2 Find all integers $n \geq 3$ such that among any n positive real numbers $a_{1}, a_{2}, \ldots, a_{n}$ with $\max \left(a_{1}, a_{2}, \ldots, a_{n}\right) \leq$ $n \cdot \min \left(a_{1}, a_{2}, \ldots, a_{n}\right)$, there exist three that are the side lengths of an acute triangle.

3 Let a, b, c be positive real numbers. Prove that $\frac{a^{3}+3 b^{3}}{5 a+b}+\frac{b^{3}+3 c^{3}}{5 b+c}+\frac{c^{3}+3 a^{3}}{5 c+a} \geq \frac{2}{3}\left(a^{2}+b^{2}+c^{2}\right)$.
Day 2 April 25th
4 Let α be an irrational number with $0<\alpha<1$, and draw a circle in the plane whose circumference has length 1 . Given any integer $n \geq 3$, define a sequence of points $P_{1}, P_{2}, \ldots, P_{n}$ as follows. First select any point P_{1} on the circle, and for $2 \leq k \leq n$ define P_{k} as the point on the circle for which the length of arc $P_{k-1} P_{k}$ is α, when travelling counterclockwise around the circle from P_{k-1} to P_{k}. Suppose that P_{a} and P_{b} are the nearest adjacent points on either side of P_{n}. Prove that $a+b \leq n$.

5 For distinct positive integers $a, b<2012$, define $f(a, b)$ to be the number of integers k with $1 \leq k<2012$ such that the remainder when $a k$ divided by 2012 is greater than that of $b k$ divided by 2012. Let S be the minimum value of $f(a, b)$, where a and b range over all pairs of distinct positive integers less than 2012. Determine S.

6 Let P be a point in the plane of $\triangle A B C$, and γ a line passing through P. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the points where the reflections of lines $P A, P B, P C$ with respect to γ intersect lines $B C, A C, A B$ respectively. Prove that $A^{\prime}, B^{\prime}, C^{\prime}$ are collinear.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

