AoPS Community

USAJMO 2013

www.artofproblemsolving.com/community/c3976
by ABCDE, djmathman, rrusczyk

Day 1 April 30th

$1 \quad$ Are there integers a and b such that $a^{5} b+3$ and $a b^{5}+3$ are both perfect cubes of integers?
2 Each cell of an $m \times n$ board is filled with some nonnegative integer. Two numbers in the filling are said to be adjacent if their cells share a common side. (Note that two numbers in cells that share only a corner are not adjacent). The filling is called a garden if it satisfies the following two conditions:
(i) The difference between any two adjacent numbers is either 0 or 1 .
(ii) If a number is less than or equal to all of its adjacent numbers, then it is equal to 0 .

Determine the number of distinct gardens in terms of m and n.
3 In triangle $A B C$, points P, Q, R lie on sides $B C, C A, A B$ respectively. Let $\omega_{A}, \omega_{B}, \omega_{C}$ denote the circumcircles of triangles $A Q R, B R P, C P Q$, respectively. Given the fact that segment $A P$ intersects $\omega_{A}, \omega_{B}, \omega_{C}$ again at X, Y, Z, respectively, prove that $Y X / X Z=B P / P C$.

Day 2 May 1st

4 Let $f(n)$ be the number of ways to write n as a sum of powers of 2 , where we keep track of the order of the summation. For example, $f(4)=6$ because 4 can be written as $4,2+2,2+1+1$, $1+2+1,1+1+2$, and $1+1+1+1$. Find the smallest n greater than 2013 for which $f(n)$ is odd.

5 Quadrilateral $X A B Y$ is inscribed in the semicircle ω with diameter $X Y$. Segments $A Y$ and $B X$ meet at P. Point Z is the foot of the perpendicular from P to line $X Y$. Point C lies on ω such that line $X C$ is perpendicular to line $A Z$. Let Q be the intersection of segments $A Y$ and $X C$. Prove that

$$
\frac{B Y}{X P}+\frac{C Y}{X Q}=\frac{A Y}{A X}
$$

6 Find all real numbers $x, y, z \geq 1$ satisfying

$$
\min (\sqrt{x+x y z}, \sqrt{y+x y z}, \sqrt{z+x y z})=\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1} .
$$

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

