2013 USAJMO

AoPS Community

USAJMO 2013

www.artofproblemsolving.com/community/c3976 by ABCDE, djmathman, rrusczyk

Day 1 April 30th

1	Are there integers a and b such that $a^{5}b + 3$ and $ab^{5} + 3$ are both perfect cubes of integers?
2	Each cell of an $m \times n$ board is filled with some nonnegative integer. Two numbers in the filling are said to be <i>adjacent</i> if their cells share a common side. (Note that two numbers in cells that share only a corner are not adjacent). The filling is called a <i>garden</i> if it satisfies the following two conditions:
	(i) The difference between any two adjacent numbers is either 0 or 1 . (ii) If a number is less than or equal to all of its adjacent numbers, then it is equal to 0 .
	Determine the number of distinct gardens in terms of m and n .
3	In triangle <i>ABC</i> , points <i>P</i> , <i>Q</i> , <i>R</i> lie on sides <i>BC</i> , <i>CA</i> , <i>AB</i> respectively. Let ω_A , ω_B , ω_C denote the circumcircles of triangles <i>AQR</i> , <i>BRP</i> , <i>CPQ</i> , respectively. Given the fact that segment <i>AP</i> intersects ω_A , ω_B , ω_C again at <i>X</i> , <i>Y</i> , <i>Z</i> , respectively, prove that $YX/XZ = BP/PC$.
Day 2	May 1st
4	Let $f(n)$ be the number of ways to write n as a sum of powers of 2, where we keep track of the order of the summation. For example, $f(4) = 6$ because 4 can be written as $4, 2 + 2, 2 + 1 + 1$, $1 + 2 + 1, 1 + 1 + 2$, and $1 + 1 + 1 + 1$. Find the smallest n greater than 2013 for which $f(n)$ is odd.

5 Quadrilateral XABY is inscribed in the semicircle ω with diameter XY. Segments AY and BX meet at P. Point Z is the foot of the perpendicular from P to line XY. Point C lies on ω such that line XC is perpendicular to line AZ. Let Q be the intersection of segments AY and XC. Prove that

$$\frac{BY}{XP} + \frac{CY}{XQ} = \frac{AY}{AX}.$$

6 Find all real numbers $x, y, z \ge 1$ satisfying

 $\min(\sqrt{x+xyz}, \sqrt{y+xyz}, \sqrt{z+xyz}) = \sqrt{x-1} + \sqrt{y-1} + \sqrt{z-1}.$

2013 USAJMO

AoPS Community

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY