AoPS Community

USAJMO 2014

www.artofproblemsolving.com/community/c3977
by ABCDE, msinghal, djmathman, rrusczyk

Day 1

1 Let a, b, c be real numbers greater than or equal to 1 . Prove that

$$
\min \left(\frac{10 a^{2}-5 a+1}{b^{2}-5 b+10}, \frac{10 b^{2}-5 b+1}{c^{2}-5 c+10}, \frac{10 c^{2}-5 c+1}{a^{2}-5 a+10}\right) \leq a b c
$$

2 Let $\triangle A B C$ be a non-equilateral, acute triangle with $\angle A=60^{\circ}$, and let O and H denote the circumcenter and orthocenter of $\triangle A B C$, respectively.
(a) Prove that line $O H$ intersects both segments $A B$ and $A C$.
(b) Line $O H$ intersects segments $A B$ and $A C$ at P and Q, respectively. Denote by s and t the respective areas of triangle $A P Q$ and quadrilateral $B P Q C$. Determine the range of possible values for s / t.
$3 \quad$ Let \mathbb{Z} be the set of integers. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
x f(2 f(y)-x)+y^{2} f(2 x-f(y))=\frac{f(x)^{2}}{x}+f(y f(y))
$$

for all $x, y \in \mathbb{Z}$ with $x \neq 0$.
Day 2 April 30th
$4 \quad$ Let $b \geq 2$ be an integer, and let $s_{b}(n)$ denote the sum of the digits of n when it is written in base b. Show that there are infinitely many positive integers that cannot be represented in the form $n+s_{b}(n)$, where n is a positive integer.
$5 \quad$ Let k be a positive integer. Two players A and B play a game on an infinite grid of regular hexagons. Initially all the grid cells are empty. Then the players alternately take turns with A moving first. In his move, A may choose two adjacent hexagons in the grid which are empty and place a counter in both of them. In his move, B may choose any counter on the board and remove it. If at any time there are k consecutive grid cells in a line all of which contain a counter, A wins. Find the minimum value of k for which A cannot win in a finite number of moves, or prove that no such minimum value exists.

6 Let $A B C$ be a triangle with incenter I, incircle γ and circumcircle Γ. Let M, N, P be the midpoints of sides $\overline{B C}, \overline{C A}, \overline{A B}$ and let E, F be the tangency points of γ with $\overline{C A}$ and $\overline{A B}$, respectively. Let U, V be the intersections of line $E F$ with line $M N$ and line $M P$, respectively, and let X be the midpoint of arc $B A C$ of Γ.
(a) Prove that I lies on ray $C V$.
(b) Prove that line $X I$ bisects $\overline{U V}$.

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

