Art of Problem Solving

AoPS Community

2005 IberoAmerican Olympiad For University Students

IberoAmerican Olympiad For University Students 2005

www.artofproblemsolving.com/community/c3980
by Jorge Miranda

1 Let $P(x, y)=\left(x^{2} y^{3}, x^{3} y^{5}\right), P^{1}=P$ and $P^{n+1}=P \circ P^{n}$. Also, let $p_{n}(x)$ be the first coordinate of $P^{n}(x, x)$, and $f(n)$ be the degree of $p_{n}(x)$. Find

$$
\lim _{n \rightarrow \infty} f(n)^{1 / n}
$$

2 Let A, B, C be real square matrices of order n such that $A^{3}=-I, B A^{2}+B A=C^{6}+C+I$ and C is symmetric. Is it possible that $n=2005$?

3 Consider the sequence defined recursively by $\left(x_{1}, y_{1}\right)=(0,0)$,
$\left(x_{n+1}, y_{n+1}\right)=\left(\left(1-\frac{2}{n}\right) x_{n}-\frac{1}{n} y_{n}+\frac{4}{n},\left(1-\frac{1}{n}\right) y_{n}-\frac{1}{n} x_{n}+\frac{3}{n}\right)$.
Find $\lim _{n \rightarrow \infty}\left(x_{n}, y_{n}\right)$.
4 A variable tangent t to the circle C_{1}, of radius r_{1}, intersects the circle C_{2}, of radius r_{2} in A and B. The tangents to C_{2} through A and B intersect in P.
Find, as a function of r_{1} and r_{2}, the distance between the centers of C_{1} and C_{2} such that the locus of P when t varies is contained in an equilateral hyperbola.
Note: A hyperbola is said to be equilateral if its asymptotes are perpendicular.
5 Arnaldo and Bernaldo play a game where they alternate saying natural numbers, and the winner is the one who says 0 . In each turn except the first the possible moves are determined from the previous number n in the following way. write

$$
n=\sum_{m \in O_{n}} 2^{m} ;
$$

the valid numbers are the elements m of O_{n}. That way, for example, after Arnaldo says $42=$ $2^{5}+2^{3}+2^{1}$, Bernaldo must respond with 5,3 or 1 .

We define the sets $A, B \subset \mathbb{N}$ in the following way. We have $n \in A$ iff Arnaldo, saying n in his first turn, has a winning strategy; analogously, we have $n \in B$ iff Bernaldo has a winning strategy if Arnaldo says n during his first turn. This way,

$$
A=\{0,2,8,10, \cdots\}, B=\{1,3,4,5,6,7,9, \cdots\}
$$

Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $f(n)=|A \cap\{0,1, \cdots, n-1\}|$. For example, $f(8)=2$ and $f(11)=4$.
Find

$$
\lim _{n \rightarrow \infty} \frac{f(n) \log (n)^{2005}}{n}
$$

$6 \quad$ A smooth function $f: I \rightarrow \mathbb{R}$ is said to be totally convex if $(-1)^{k} f^{(k)}(t)>0$ for all $t \in I$ and every integer $k>0$ (here I is an open interval).

Prove that every totally convex function $f:(0,+\infty) \rightarrow \mathbb{R}$ is real analytic.
Note: A function $f: I \rightarrow \mathbb{R}$ is said to be smooth if for every positive integer k the derivative of order k of f is well defined and continuous over \mathbb{R}. A smooth function $f: I \rightarrow \mathbb{R}$ is said to be real analytic if for every $t \in I$ there exists $\epsilon>0$ such that for all real numbers h with $|h|<\epsilon$ the Taylor series

$$
\sum_{k \geq 0} \frac{f^{(k)}(t)}{k!} h^{k}
$$

converges and is equal to $f(t+h)$.
7 Prove that for any integers $n, p, 0<n \leq p$, all the roots of the polynomial below are real:

$$
P_{n, p}(x)=\sum_{j=0}^{n}\binom{p}{j}\binom{p}{n-j} x^{j}
$$

