AoPS Community

IberoAmerican Olympiad For University Students 2006

www.artofproblemsolving.com/community/c3981
by Jorge Miranda

1 Let m, n be positive integers greater than 1 . We define the sets $P_{m}=\left\{\frac{1}{m}, \frac{2}{m}, \cdots, \frac{m-1}{m}\right\}$ and $P_{n}=\left\{\frac{1}{n}, \frac{2}{n}, \cdots, \frac{n-1}{n}\right\}$.
Find the distance between P_{m} and P_{n}, that is defined as

$$
\min \left\{|a-b|: a \in P_{m}, b \in P_{n}\right\}
$$

2 Prove that for any positive integer n and any real numbers $a_{1}, a_{2}, \cdots, a_{n}, b_{1}, b_{2}, \cdots, b_{n}$ we have that the equation

$$
a_{1} \sin (x)+a_{2} \sin (2 x)+\cdots+a_{n} \sin (n x)=b_{1} \cos (x)+b_{2} \cos (2 x)+\cdots+b_{n} \cos (n x)
$$

has at least one real root.
3 Let $p_{1}(x)=p(x)=4 x^{3}-3 x$ and $p_{n+1}(x)=p\left(p_{n}(x)\right)$ for each positive integer n. Also, let $A(n)$ be the set of all the real roots of the equation $p_{n}(x)=x$.

Prove that $A(n) \subseteq A(2 n)$ and that the product of the elements of $A(n)$ is the average of the elements of $A(2 n)$.

4 Prove that for any interval $[a, b]$ of real numbers and any positive integer n there exists a positive integer k and a partition of the given interval

$$
a=x(0)<x(1)<x(2)<\cdots<x(k-1)<x(k)=b
$$

such that

$$
\int_{x(0)}^{x(1)} f(x) d x+\int_{x(2)}^{x(3)} f(x) d x+\cdots=\int_{x(1)}^{x(2)} f(x) d x+\int_{x(3)}^{x(4)} f(x) d x+\cdots
$$

for all polynomials f with real coefficients and degree less than n.
5 A regular n-gon is inscribed in a circle of radius 1 . Let a_{1}, \cdots, a_{n-1} be the distances of one of the vertices of the polygon to all the other vertices. Prove that

$$
\left(5-a_{1}^{2}\right) \cdots\left(5-a_{n-1}^{2}\right)=F_{n}^{2}
$$

where F_{n} is the $n^{\text {th }}$ term of the Fibonacci sequence $1,1,2, \ldots$

6 Let $x_{0}(t)=1, x_{k+1}(t)=\left(1+t^{k+1}\right) x_{k}(t)$ for all $k \geq 0 ; y_{n, 0}(t)=1, y_{n, k}(t)=\frac{t^{n-k+1}-1}{t^{k}-1} y_{n, k-1}(t)$ for all $n \geq 0,1 \leq k \leq n$.
Prove that $\sum_{j=0}^{n-1}(-1)^{j} x_{n-j-1}(t) y_{n, j}(t)=\frac{1-(-1)^{n}}{2}$ for all $n \geq 1$.
7 Consider the multiplicative group $A=\left\{z \in \mathbb{C} \mid z^{2006^{k}}=1,0<k \in \mathbb{Z}\right\}$ of all the roots of unity of degree 2006^{k} for all positive integers k.
Find the number of homomorphisms $f: A \rightarrow A$ that satisfy $f(f(x))=f(x)$ for all elements $x \in A$.

