Art of Problem Solving

AoPS Community

2008 IberoAmerican Olympiad For University Students

IberoAmerican Olympiad For University Students 2008

www.artofproblemsolving.com/community/c3983
by Jorge Miranda

1 Let n be a positive integer that is not divisible by either 2 or 5 .
In the decimal expansion of $\frac{1}{n}=0 . a_{1} a_{2} a_{3} \cdots$ a finite number of digits after the decimal point are chosen arbitrarily to be deleted.
Clearly the decimal number obtained by this procedure is also rational, so it's equal to $\frac{a}{b}$ for some integers a, b. Prove that b is divisible by n.

2 Prove that for each natural number n there is a polynomial f with real coefficients and degree n such that $p(x)=f\left(x^{2}-1\right)$ is divisible by $f(x)$ over the ring $\mathbb{R}[x]$.

3 Prove that $x+\frac{1}{x^{x}}<2$ for $0<x<1$.
4 Two vertices A, B of a triangle $A B C$ are located on a parabola $y=a x^{2}+b x+c$ with $a>0$ in such a way that the sides $A C, B C$ are tangent to the parabola.
Let m_{c} be the length of the median $C C_{1}$ of triangle $A B C$ and S be the area of triangle $A B C$. Find

$$
\frac{S^{2}}{m_{c}^{3}}
$$

5 Find all positive integers n such that there are positive integers $a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}$ that satisfy

$$
\left(a_{1}^{2}+\cdots+a_{n}^{2}\right)\left(b_{1}^{2}+\cdots+b_{n}^{2}\right)-\left(a_{1} b_{1}+\cdots+a_{n} b_{n}\right)^{2}=n
$$

6 a) Determine if there are matrices $A, B, C \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $A^{2}+B^{2}=C^{2}$.
b) Determine if there are matrices $A, B, C \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $A^{4}+B^{4}=C^{4}$.

Note: The notation $A \in \mathrm{SL}_{2}(\mathbb{Z})$ means that A is a 2×2 matrix with integer entries and $\operatorname{det} A=1$.
$7 \quad$ Let A be an abelian additive group such that all nonzero elements have infinite order and for each prime number p we have the inequality $|A / p A| \leq p$, where $p A=\{p a \mid a \in A\}, p a=a+a+$ $\cdots+a$ (where the sum has p summands) and $|A / p A|$ is the order of the quotient group $A / p A$ (the index of the subgroup $p A$).
Prove that each subgroup of A of finite index is isomorphic to A.

