Art of Problem Solving

AoPS Community

2009 IberoAmerican Olympiad For University Students

IberoAmerican Olympiad For University Students 2009

www.artofproblemsolving.com/community/c3984
by Jorge Miranda

1 A line through a vertex of a non-degenerate triangle cuts it in two similar triangles with $\sqrt{3}$ as the ratio between correspondent sides.
Find the angles of the given triangle.
2 Let x_{1}, \cdots, x_{n} be nonzero vectors of a vector space V and $\varphi: V \rightarrow V$ be a linear transformation such that $\varphi x_{1}=x_{1}, \varphi x_{k}=x_{k}-x_{k-1}$ for $k=2,3, \ldots, n$.
Prove that the vectors x_{1}, \ldots, x_{n} are linearly independent.
3 Let $a, b, c, d, e \in \mathbb{R}^{+}$and $f:\left\{(x, y) \in\left(\mathbb{R}^{+}\right)^{2} \mid c-d x-e y>0\right\} \rightarrow \mathbb{R}^{+}$be given by $f(x, y)=$ $(a x)(b y)(c-d x-e y)$.
Find the maximum value of f.
4 Given two positive integers m, n, we say that a function $f:[0, m] \rightarrow \mathbb{R}$ is (m, n)-slippery if it has the following properties:
i) f is continuous;
ii) $f(0)=0, f(m)=n$;
iii) If $t_{1}, t_{2} \in[0, m]$ with $t_{1}<t_{2}$ are such that $t_{2}-t_{1} \in \mathbb{Z}$ and $f\left(t_{2}\right)-f\left(t_{1}\right) \in \mathbb{Z}$, then $t_{2}-t_{1} \in\{0, m\}$.

Find all the possible values for m, n such that there is a function f that is (m, n)-slippery.
$5 \quad$ Let \mathbb{N} and \mathbb{N}^{*} be the sets containing the natural numbers/positive integers respectively.
We define a binary relation on \mathbb{N} by $a \in ́ b$ iff the a-th bit in the binary representation of b is 1 .
We define a binary relation on \mathbb{N}^{*} by $a \tilde{\epsilon} b$ iff b is a multiple of the a-th prime number p_{a}.
i) Prove that there is no bijection $f: \mathbb{N} \rightarrow \mathbb{N}^{*}$ such that $a \in b \Leftrightarrow f(a) \tilde{\in} f(b)$.
ii) Prove that there is a bijection $g: \mathbb{N} \rightarrow \mathbb{N}^{*}$ such that $(a \in ́ b \vee b \in a) \Leftrightarrow(g(a) \tilde{\in} g(b) \vee g(b) \tilde{\in} g(a))$.

6 Let $\alpha_{1}, \ldots, \alpha_{d}, \beta_{1}, \ldots, \beta_{e} \in \mathbb{C}$ be such that the polynomials
$f_{1}(x)=\prod_{i=1}^{d}\left(x-\alpha_{i}\right)$ and $f_{2}(x)=\prod_{i=1}^{e}\left(x-\beta_{i}\right)$
have integer coefficients.
Suppose that there exist polynomials $g_{1}, g_{2} \in \mathbb{Z}[x]$ such that $f_{1} g_{1}+f_{2} g_{2}=1$.
Prove that $\left|\prod_{i=1}^{d} \prod_{j=1}^{e}\left(\alpha_{i}-\beta_{j}\right)\right|=1$
$7 \quad$ Let G be a group such that every subgroup of G is subnormal. Suppose that there exists N normal subgroup of G such that $Z(N)$ is nontrivial and G / N is cyclic. Prove that $Z(G)$ is nontrivial. ($Z(G)$ denotes the center of G).

Note: A subgroup H of G is subnormal if there exist subgroups $H_{1}, H_{2}, \ldots, H_{m}=G$ of G such that $H \triangleleft H_{1} \triangleleft H_{2} \triangleleft \ldots \triangleleft H_{m}=G$ (\triangleleft denotes normal subgroup).

