AoPS Community

2010 IberoAmerican Olympiad For University Students

IberoAmerican Olympiad For University Students 2010

www.artofproblemsolving.com/community/c3985
by Joao Pedro Santos

1 Let $f: S \rightarrow \mathbb{R}$ be the function from the set of all right triangles into the set of real numbers, defined by $f(\triangle A B C)=\frac{h}{r}$, where h is the height with respect to the hypotenuse and r is the inscribed circle's radius. Find the image, $\operatorname{Im}(f)$, of the function.

2 Calculate the sum of the series $\sum_{-\infty}^{\infty} \frac{\sin ^{3} 3^{k}}{3^{k}}$.
3 A student adds up rational fractions incorrectly:

$$
\frac{a}{b}+\frac{x}{y}=\frac{a+x}{b+y}
$$

Despite that, he sometimes obtains correct results. For a given fraction $\frac{a}{b}, a, b \in \mathbb{Z}, b>0$, find all fractions $\frac{x}{y}, x, y \in \mathbb{Z}, y>0$ such that the result obtained by (\star) is correct.

4 Let $p(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a monic polynomial of degree $n>2$, with real coefficients and all its roots real and different from zero. Prove that for all $k=0,1,2, \cdots, n-2$, at least one of the coefficients a_{k}, a_{k+1} is different from zero.

5 Let A, B be matrices of dimension 2010×2010 which commute and have real entries, such that $A^{2010}=B^{2010}=I$, where I is the identity matrix. Prove that if $\operatorname{tr}(A B)=2010$, then $\operatorname{tr}(A)=\operatorname{tr}(B)$.

6 Prove that, for all integer $a>1$, the prime divisors of $5 a^{4}-5 a^{2}+1$ have the form $20 k \pm 1, k \in \mathbb{Z}$. Proposed by Gza Ks.

7 (a) Prove that, for any positive integers $m \leq \ell$ given, there is a positive integer n and positive integers $x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}$ such that the equality

$$
\sum_{i=1}^{n} x_{i}^{k}=\sum_{i=1}^{n} y_{i}^{k}
$$

holds for every $k=1,2, \cdots, m-1, m+1, \cdots, \ell$, but does not hold for $k=m$.
(b) Prove that there is a solution of the problem, where all numbers $x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}$ are distinct.

Proposed by Ilya Bogdanov and Gza Ks.

