Art of Problem Solving

AoPS Community

Benelux 2009

www.artofproblemsolving.com/community/c3986
by WakeUp

- May 9th

1 Find all functions $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ that satisfy the following two conditions: $\bullet f(n)$ is a perfect square for all $n \in \mathbb{Z}_{>0} \bullet f(m+n)=f(m)+f(n)+2 m n$ for all $m, n \in \mathbb{Z}_{>0}$.

2 Let n be a positive integer and let k be an odd positive integer. Moreover, let a, b and c be integers (not necessarily positive) satisfying the equations

$$
a^{n}+k b=b^{n}+k c=c^{n}+k a
$$

Prove that $a=b=c$.
3 Let $n \geq 1$ be an integer. In town X there are n girls and n boys, and each girl knows each boy. In town Y there are n girls, $g_{1}, g_{2}, \ldots, g_{n}$, and $2 n-1$ boys, $b_{1}, b_{2}, \ldots, b_{2 n-1}$. For $i=1,2, \ldots, n$, girl g_{i} knows boys $b_{1}, b_{2}, \ldots, b_{2 i-1}$ and no other boys. Let r be an integer with $1 \leq r \leq n$. In each of the towns a party will be held where r girls from that town and r boys from the same town are supposed to dance with each other in r dancing pairs. However, every girl only wants to dance with a boy she knows. Denote by $X(r)$ the number of ways in which we can choose r dancing pairs from town X, and by $Y(r)$ the number of ways in which we can choose r dancing pairs from town Y. Prove that $X(r)=Y(r)$ for $r=1,2, \ldots, n$.

4 Given trapezoid $A B C D$ with parallel sides $A B$ and $C D$, let E be a point on line $B C$ outside segment $B C$, such that segment $A E$ intersects segment $C D$. Assume that there exists a point F inside segment $A D$ such that $\angle E A D=\angle C B F$. Denote by I the point of intersection of $C D$ and $E F$, and by J the point of intersection of $A B$ and $E F$. Let K be the midpoint of segment $E F$, and assume that K is different from I and J.

Prove that K belongs to the circumcircle of $\triangle A B I$ if and only if K belongs to the circumcircle of $\triangle C D J$.

