Act of Problem Solving

AoPS Community

Benelux 2009

www.artofproblemsolving.com/community/c3986 by WakeUp

-	May 9th
1	Find all functions $f : \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ that satisfy the following two conditions: • $f(n)$ is a perfect square for all $n \in \mathbb{Z}_{>0}$ • $f(m+n) = f(m) + f(n) + 2mn$ for all $m, n \in \mathbb{Z}_{>0}$.
2	Let n be a positive integer and let k be an odd positive integer. Moreover, let a, b and c be integers (not necessarily positive) satisfying the equations
	$a^n + kb = b^n + kc = c^n + ka$
	Prove that $a = b = c$.
3	Let $n \ge 1$ be an integer. In town X there are n girls and n boys, and each girl knows each boy. In town Y there are n girls, g_1, g_2, \ldots, g_n , and $2n-1$ boys, $b_1, b_2, \ldots, b_{2n-1}$. For $i = 1, 2, \ldots, n$, girl g_i knows boys $b_1, b_2, \ldots, b_{2i-1}$ and no other boys. Let r be an integer with $1 \le r \le n$. In each of the towns a party will be held where r girls from that town and r boys from the same town are supposed to dance with each other in r dancing pairs. However, every girl only wants to dance with a boy she knows. Denote by $X(r)$ the number of ways in which we can choose r dancing pairs from town X , and by $Y(r)$ the number of ways in which we can choose r dancing pairs from town Y . Prove that $X(r) = Y(r)$ for $r = 1, 2, \ldots, n$.
4	Given trapezoid $ABCD$ with parallel sides AB and CD , let E be a point on line BC outside

Solven trapezoid *ABCD* with parallel sides *AB* and *CD*, let *E* be a point on line *BC* outside segment *BC*, such that segment *AE* intersects segment *CD*. Assume that there exists a point *F* inside segment *AD* such that $\angle EAD = \angle CBF$. Denote by *I* the point of intersection of *CD* and *EF*, and by *J* the point of intersection of *AB* and *EF*. Let *K* be the midpoint of segment *EF*, and assume that *K* is different from *I* and *J*.

Prove that *K* belongs to the circumcircle of $\triangle ABI$ if and only if *K* belongs to the circumcircle of $\triangle CDJ$.

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱