AoPS Community

Benelux 2011

www.artofproblemsolving.com/community/c3988
by Lepuslapis

- May 7th

1 An ordered pair of integers (m, n) with $1<m<n$ is said to be a Benelux couple if the following two conditions hold: m has the same prime divisors as n, and $m+1$ has the same prime divisors as $n+1$.
(a) Find three Benelux couples (m, n) with $m \leqslant 14$.
(b) Prove that there are infinitely many Benelux couples

2 Let $A B C$ be a triangle with incentre I. The angle bisectors $A I, B I$ and $C I$ meet $[B C],[C A]$ and $[A B]$ at D, E and F, respectively. The perpendicular bisector of $[A D]$ intersects the lines $B I$ and $C I$ at M and N, respectively. Show that A, I, M and N lie on a circle.

3 If k is an integer, let $\mathrm{c}(k)$ denote the largest cube that is less than or equal to k. Find all positive integers p for which the following sequence is bounded: $a_{0}=p$ and $a_{n+1}=3 a_{n}-2 \mathrm{c}\left(a_{n}\right)$ for $n \geqslant 0$.

4 Abby and Brian play the following game: They first choose a positive integer N. Then they write numbers on a blackboard in turn. Abby starts by writing a 1 . Thereafter, when one of them has written the number n, the other writes down either $n+1$ or $2 n$, provided that the number is not greater than N. The player who writes N on the blackboard wins.
(a) Determine which player has a winning strategy if $N=2011$.
(b) Find the number of positive integers $N \leqslant 2011$ for which Brian has a winning strategy.
(This is based on ISL 2004, Problem C5.)

