AoPS Community

Benelux 2013

www.artofproblemsolving.com/community/c3990
by djb86

- June 27th

1 Let $n \geq 3$ be an integer. A frog is to jump along the real axis, starting at the point 0 and making n jumps: one of length 1 , one of length $2, \ldots$, one of length n. It may perform these n jumps in any order. If at some point the frog is sitting on a number $a \leq 0$, its next jump must be to the right (towards the positive numbers). If at some point the frog is sitting on a number $a>0$, its next jump must be to the left (towards the negative numbers). Find the largest positive integer k for which the frog can perform its jumps in such an order that it never lands on any of the numbers $1,2, \ldots, k$.

2 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+y)+y \leq f(f(f(x)))
$$

holds for all $x, y \in \mathbb{R}$.
3 Let $\triangle A B C$ be a triangle with circumcircle Γ, and let I be the center of the incircle of $\triangle A B C$. The lines $A I, B I$ and $C I$ intersect Γ in $D \neq A, E \neq B$ and $F \neq C$. The tangent lines to Γ in F, D and E intersect the lines $A I, B I$ and $C I$ in R, S and T, respectively. Prove that

$$
|A R| \cdot|B S| \cdot|C T|=|I D| \cdot|I E| \cdot|I F| .
$$

4 a) Find all positive integers g with the following property: for each odd prime number p there exists a positive integer n such that p divides the two integers

$$
g^{n}-n \quad \text { and } \quad g^{n+1}-(n+1) .
$$

b) Find all positive integers g with the following property: for each odd prime number p there exists a positive integer n such that p divides the two integers

$$
g^{n}-n^{2} \quad \text { and } g^{n+1}-(n+1)^{2} .
$$

