2014 Benelux

AoPS Community

Benelux 2014

www.artofproblemsolving.com/community/c3991 by TheMaskedMagician

-	May 3rd
---	---------

1 Find the smallest possible value of the expression

$$\left\lfloor \frac{a+b+c}{d} \right\rfloor + \left\lfloor \frac{b+c+d}{a} \right\rfloor + \left\lfloor \frac{c+d+a}{b} \right\rfloor + \left\lfloor \frac{d+a+b}{c} \right\rfloor$$

in which *a*, *b*, *c*, and *d* vary over the set of positive integers.

(Here $\lfloor x \rfloor$ denotes the biggest integer which is smaller than or equal to x.)

2 Let $k \ge 1$ be a positive integer.

We consider 4k chips, 2k of which are red and 2k of which are blue. A sequence of those 4k chips can be transformed into another sequence by a so-called move, consisting of interchanging a number (possibly one) of consecutive red chips with an

equal number of consecutive blue chips. For example, we can move from $r\underline{bb}br\underline{rr}b$ to $r\underline{rr}br\underline{bb}b$ where r denotes a red chip and b denotes a blue chip.

Determine the smallest number n (as a function of k) such that starting from any initial sequence of the 4k chips, we need at most n moves to reach the state in which the first 2k chips are red.

3 For all integers $n \ge 2$ with the following property:

- for each pair of positive divisors k, $\ell < n$, at least one of the numbers $2k - \ell$ and $2\ell - k$ is a (not necessarily positive) divisor of n as well.

4 Let ABCD be a square. Consider a variable point *P* inside the square for which $\angle BAP \ge 60^{\circ}$. Let *Q* be the intersection of the line *AD* and the perpendicular to *BP* in *P*. Let *R* be the intersection of the line *BQ* and the perpendicular to *BP* from *C*.

- (a) Prove that $|BP| \ge |BR|$

- (b) For which point(s) P does the inequality in (a) become an equality?

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🕬