Art of Problem Solving

AoPS Community

Spain Mathematical Olympiad 2008

www.artofproblemsolving.com/community/c3994
by WakeUp

Day 1

1 Find two positive integers a and b, when their sum and their least common multiple is given. Find the numbers when the sum is 3972 and the least common multiple is 985928.

2 Let a and b be two real numbers, with $0<a, b<1$. Prove that

$$
\sqrt{a b^{2}+a^{2} b}+\sqrt{(1-a)(1-b)^{2}+(1-a)^{2}(1-b)}<\sqrt{2}
$$

3 Let $p \geq 3$ be a prime number. Each side of a triangle is divided into p equal parts, and we draw a line from each division point to the opposite vertex. Find the maximum number of regions, every two of them disjoint, that are formed inside the triangle.

Day 2

1 Let p and q be two different prime numbers. Prove that there are two positive integers, a and b, such that the arithmetic mean of the divisors of $n=p^{a} q^{b}$ is an integer.

2 Given a circle, two fixed points A and B and a variable point P, all of them on the circle, and a line $r, P A$ and $P B$ intersect r at C and D, respectively. Find two fixed points on r, M and N, such that $C M \cdot D N$ is constant for all P.

3 Every point in the plane is coloured one of seven distinct colours. Is there an inscribed trapezoid whose vertices are all of the same colour?

