AoPS Community

Spain Mathematical Olympiad 2010

www.artofproblemsolving.com/community/c3996
by WakeUp, hatchguy

Day 1

1 A pucelana sequence is an increasing sequence of 16 consecutive odd numbers whose sum is a perfect cube. How many pucelana sequences are there with 3-digit numbers only?

2 Let \mathbb{N}_{0} and \mathbb{Z} be the set of all non-negative integers and the set of all integers, respectively. Let $f: \mathbb{N}_{0} \rightarrow \mathbb{Z}$ be a function defined as

$$
f(n)=-f\left(\left\lfloor\frac{n}{3}\right\rfloor\right)-3\left\{\frac{n}{3}\right\}
$$

where $\lfloor x\rfloor$ is the greatest integer smaller than or equal to x and $\{x\}=x-\lfloor x\rfloor$. Find the smallest integer n such that $f(n)=2010$.

3 Let $A B C D$ be a convex quadrilateral. $A C$ and $B D$ meet at P, with $\angle A P D=60^{\circ}$. Let E, F, G, and H be the midpoints of $A B, B C, C D$ and $D A$ respectively. Find the greatest positive real number k for which

$$
E G+3 H F \geq k d+(1-k) s
$$

where s is the semi-perimeter of the quadrilateral $A B C D$ and d is the sum of the lengths of its diagonals. When does the equality hold?

Day 2

1 Let a, b, c be three positive real numbers. Show that

$$
\frac{a+b+3 c}{3 a+3 b+2 c}+\frac{a+3 b+c}{3 a+2 b+3 c}+\frac{3 a+b+c}{2 a+3 b+3 c} \geq \frac{15}{8}
$$

2 In a triangle $A B C$, let P be a point on the bisector of $\angle B A C$ and let A^{\prime}, B^{\prime} and C^{\prime} be points on lines $B C, C A$ and $A B$ respectively such that $P A^{\prime}$ is perpendicular to $B C, P B^{\prime} \perp A C$, and $P C^{\prime} \perp A B$. Prove that $P A^{\prime}$ and $B^{\prime} C^{\prime}$ intersect on the median $A M$, where M is the midpoint of $B C$.

3 Let p be a prime number and A an infinite subset of the natural numbers. Let $f_{A}(n)$ be the number of different solutions of $x_{1}+x_{2}+\ldots+x_{p}=n$, with $x_{1}, x_{2}, \ldots x_{p} \in A$. Does there exist a number N for which $f_{A}(n)$ is constant for all $n<N$?

